cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008292 Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 66, 26, 1, 1, 57, 302, 302, 57, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

The indexing used here follows that given in the classic books by Riordan and Comtet. For two other versions see A173018 and A123125. - N. J. A. Sloane, Nov 21 2010
Coefficients of Eulerian polynomials. Number of permutations of n objects with k-1 rises. Number of increasing rooted trees with n+1 nodes and k leaves.
T(n,k) = number of permutations of [n] with k runs. T(n,k) = number of permutations of [n] requiring k readings (see the Knuth reference). T(n,k) = number of permutations of [n] having k distinct entries in its inversion table. - Emeric Deutsch, Jun 09 2004
T(n,k) = number of ways to write the Coxeter element s_{e1}s_{e1-e2}s_{e2-e3}s_{e3-e4}...s_{e_{n-1}-e_n} of the reflection group of type B_n, using s_{e_k} and as few reflections of the form s_{e_i+e_j}, where i = 1, 2, ..., n and j is not equal to i, as possible. - Pramook Khungurn (pramook(AT)mit.edu), Jul 07 2004
Subtriangle for k>=1 and n>=1 of triangle A123125. - Philippe Deléham, Oct 22 2006
T(n,k)/n! also represents the n-dimensional volume of the portion of the n-dimensional hypercube cut by the (n-1)-dimensional hyperplanes x_1 + x_2 + ... x_n = k, x_1 + x_2 + ... x_n = k-1; or, equivalently, it represents the probability that the sum of n independent random variables with uniform distribution between 0 and 1 is between k-1 and k. - Stefano Zunino, Oct 25 2006
[E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [-P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials and P(n,t) are the polynomials in A131758. - Tom Copeland, Sep 30 2007
From Tom Copeland, Oct 07 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1*x + (2+t)*x^2/2! + (6+6*t+t^2)*x^3/3! + ... gives row polynomials for A090582, the reverse f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra (Postnikov et al.).
G((t+1)*x, -1/(t+1)) = 1 + (1+t)*x + (1+3*t+2*t^2)*x^2/2! + ... gives row polynomials for A028246.
(End)
A subexceedant function f on [n] is a map f:[n] -> [n] such that 1 <= f(i) <= i for all i, 1 <= i <= n. T(n,k) equals the number of subexceedant functions f of [n] such that the image of f has cardinality k [Mantaci & Rakotondrajao]. Example T(3,2) = 4: if we identify a subexceedant function f with the word f(1)f(2)...f(n) then the subexceedant functions on [3] are 111, 112, 113, 121, 122 and 123 and four of these functions have an image set of cardinality 2. - Peter Bala, Oct 21 2008
Further to the comments of Tom Copeland above, the n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type A_(n-1). The corresponding f-vectors are the rows of A019538. For example, 1 + 4*x + x^2 = y^2 + 6*y + 6 and 1 + 11*x + 11*x^2 + x^3 = y^3 + 14*y^2 + 36*y + 24, where x = y + 1, give [1,6,6] and [1,14,36,24] as the third and fourth rows of A019538. The Hilbert transform of this triangle (see A145905 for the definition) is A047969. See A060187 for the triangle of Eulerian numbers of type B (the h-vectors of the simplicial complexes dual to permutohedra of type B). See A066094 for the array of h-vectors of type D. For tables of restricted Eulerian numbers see A144696 - A144699. - Peter Bala, Oct 26 2008
For a natural refinement of A008292 with connections to compositional inversion and iterated derivatives, see A145271. - Tom Copeland, Nov 06 2008
The polynomials E(z,n) = numerator(Sum_{k>=1} (-1)^(n+1)*k^n*z^(k-1)) for n >=1 lead directly to the triangle of Eulerian numbers. - Johannes W. Meijer, May 24 2009
From Walther Janous (walther.janous(AT)tirol.com), Nov 01 2009: (Start)
The (Eulerian) polynomials e(n,x) = Sum_{k=0..n-1} T(n,k+1)*x^k turn out to be also the numerators of the closed-form expressions of the infinite sums:
S(p,x) = Sum_{j>=0} (j+1)^p*x^j, that is
S(p,x) = e(p,x)/(1-x)^(p+1), whenever |x| < 1 and p is a positive integer.
(Note the inconsistent use of T(n,k) in the section listing the formula section. I adhere tacitly to the first one.) (End)
If n is an odd prime, then all numbers of the (n-2)-th and (n-1)-th rows are in the progression k*n+1. - Vladimir Shevelev, Jul 01 2011
The Eulerian triangle is an element of the formula for the r-th successive summation of Sum_{k=1..n} k^j which appears to be Sum_{k=1..n} T(j,k-1) * binomial(j-k+n+r, j+r). - Gary Detlefs, Nov 11 2011
Li and Wong show that T(n,k) counts the combinatorially inequivalent star polygons with n+1 vertices and sum of angles (2*k-n-1)*Pi. An equivalent formulation is: define the total sign change S(p) of a permutation p in the symmetric group S_n to be equal to Sum_{i=1..n} sign(p(i)-p(i+1)), where we take p(n+1) = p(1). T(n,k) gives the number of permutations q in S_(n+1) with q(1) = 1 and S(q) = 2*k-n-1. For example, T(3,2) = 4 since in S_4 the permutations (1243), (1324), (1342) and (1423) have total sign change 0. - Peter Bala, Dec 27 2011
Xiong, Hall and Tsao refer to Riordan and mention that a traditional Eulerian number A(n,k) is the number of permutations of (1,2...n) with k weak exceedances. - Susanne Wienand, Aug 25 2014
Connections to algebraic geometry/topology and characteristic classes are discussed in the Buchstaber and Bunkova, the Copeland, the Hirzebruch, the Lenart and Zainoulline, the Losev and Manin, and the Sheppeard links; to the Grassmannian, in the Copeland, the Farber and Postnikov, the Sheppeard, and the Williams links; and to compositional inversion and differential operators, in the Copeland and the Parker links. - Tom Copeland, Oct 20 2015
The bivariate e.g.f. noted in the formulas is related to multiplying edges in certain graphs discussed in the Aluffi-Marcolli link. See p. 42. - Tom Copeland, Dec 18 2016
Distribution of left children in treeshelves is given by a shift of the Eulerian numbers. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. See A278677, A278678 or A278679 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
The row polynomial P(n, x) = Sum_{k=1..n} T(n, k)*x^k appears in the numerator of the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} P(n, x)/(1 - x)^(n+2) for n >= 0 (with 0^0=1). See also triangle A131689 with a Mar 31 2017 comment for a rewritten form. For the e.g.f see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
For relations to Ehrhart polynomials, volumes of polytopes, polylogarithms, the Todd operator, and other special functions, polynomials, and sequences, see A131758 and the references therein. - Tom Copeland, Jun 20 2017
For relations to values of the Riemann zeta function at integral arguments, see A131758 and the Dupont reference. - Tom Copeland, Mar 19 2018
Normalized volumes of the hypersimplices, attributed to Laplace. (Cf. the De Loera et al. reference, p. 327.) - Tom Copeland, Jun 25 2018

Examples

			The triangle T(n, k) begins:
n\k 1    2     3      4       5       6      7     8    9 10 ...
1:  1
2:  1    1
3:  1    4     1
4:  1   11    11      1
5:  1   26    66     26       1
6:  1   57   302    302      57       1
7:  1  120  1191   2416    1191     120      1
8:  1  247  4293  15619   15619    4293    247     1
9:  1  502 14608  88234  156190   88234  14608   502    1
10: 1 1013 47840 455192 1310354 1310354 455192 47840 1013  1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
-----------------------------------------------------------------
E.g.f. = (y) * x^1 / 1! + (y + y^2) * x^2 / 2! + (y + 4*y^2 + y^3) * x^3 / 3! + ... - _Michael Somos_, Mar 17 2011
Let n=7. Then the following 2*7+1=15 consecutive terms are 1(mod 7): a(15+i), i=0..14. - _Vladimir Shevelev_, Jul 01 2011
Row 3: The plane increasing 0-1-2 trees on 3 vertices (with the number of colored vertices shown to the right of a vertex) are
.
.   1o (1+t)         1o t         1o t
.   |                / \          / \
.   |               /   \        /   \
.   2o (1+t)      2o     3o    3o    2o
.   |
.   |
.   3o
.
The total number of trees is (1+t)^2 + t + t = 1 + 4*t + t^2.
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 106.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254; 2nd. ed., p. 268.[Worpitzky's identity (6.37)]
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1998, Vol. 3, p. 47 (exercise 5.1.4 Nr. 20) and p. 605 (solution).
  • Meng Li and Ron Goldman. "Limits of sums for binomial and Eulerian numbers and their associated distributions." Discrete Mathematics 343.7 (2020): 111870.
  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/
  • K. Mittelstaedt, A stochastic approach to Eulerian numbers, Amer. Math. Mnthly, 127:7 (2020), 618-628.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Figure M3416, Academic Press, 1995.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, 1973, see p. 208.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 101.

Crossrefs

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Jun 29 2018
    
  • Haskell
    import Data.List (genericLength)
    a008292 n k = a008292_tabl !! (n-1) !! (k-1)
    a008292_row n = a008292_tabl !! (n-1)
    a008292_tabl = iterate f [1] where
       f xs = zipWith (+)
         (zipWith (*) ([0] ++ xs) (reverse ks)) (zipWith (*) (xs ++ [0]) ks)
         where ks = [1 .. 1 + genericLength xs]
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[Eulerian(n,k): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Apr 15 2019
  • Maple
    A008292 := proc(n,k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc:
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, May 31 2011, after Michael Somos *)
    Flatten[Table[CoefficientList[(1-x)^(k+1)*PolyLog[-k, x]/x, x], {k, 1, 10}]] (* Vaclav Kotesovec, Aug 27 2015 *)
    Table[Tally[
       Count[#, x_ /; x > 0] & /@ (Differences /@
          Permutations[Range[n]])][[;; , 2]], {n, 10}] (* Li Han, Oct 11 2020 *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, if( n==1, 1, k * T(n-1, k) + (n-k+1) * T(n-1, k-1)))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {T(n, k) = sum( j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {A(n,c)=c^(n+c-1)+sum(i=1,c-1,(-1)^i/i!*(c-i)^(n+c-1)*prod(j=1,i,n+c+1-j))}
    
  • Python
    from sympy import binomial
    def T(n, k): return sum([(-1)**j*(k - j)**n*binomial(n + 1, j) for j in range(k + 1)])
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 08 2017
    
  • R
    T <- function(n, k) {
      S <- numeric()
      for (j in 0:k) S <- c(S, (-1)^j*(k-j)^n*choose(n+1, j))
      return(sum(S))
    }
    for (n in 1:10){
      for (k in 1:n) print(T(n,k))
    } # Indranil Ghosh, Nov 08 2017
    
  • Sage
    [[sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 23 2019
    

Formula

T(n, k) = k * T(n-1, k) + (n-k+1) * T(n-1, k-1), T(1, 1) = 1.
T(n, k) = Sum_{j=0..k} (-1)^j * (k-j)^n * binomial(n+1, j).
Row sums = n! = A000142(n) unless n=0. - Michael Somos, Mar 17 2011
E.g.f. A(x, q) = Sum_{n>0} (Sum_{k=1..n} T(n, k) * q^k) * x^n / n! = q * ( e^(q*x) - e^x ) / ( q*e^x - e^(q*x) ) satisfies dA / dx = (A + 1) * (A + q). - Michael Somos, Mar 17 2011
For a column listing, n-th term: T(c, n) = c^(n+c-1) + Sum_{i=1..c-1} (-1)^i/i!*(c-i)^(n+c-1)*Product_{j=1..i} (n+c+1-j). - Randall L Rathbun, Jan 23 2002
From John Robertson (jpr2718(AT)aol.com), Sep 02 2002: (Start)
Four characterizations of Eulerian numbers T(i, n):
1. T(0, n)=1 for n>=1, T(i, 1)=0 for i>=1, T(i, n) = (n-i)T(i-1, n-1) + (i+1)T(i, n-1).
2. T(i, n) = Sum_{j=0..i} (-1)^j*binomial(n+1,j)*(i-j+1)^n for n>=1, i>=0.
3. Let C_n be the unit cube in R^n with vertices (e_1, e_2, ..., e_n) where each e_i is 0 or 1 and all 2^n combinations are used. Then T(i, n)/n! is the volume of C_n between the hyperplanes x_1 + x_2 + ... + x_n = i and x_1 + x_2 + ... + x_n = i+1. Hence T(i, n)/n! is the probability that i <= X_1 + X_2 + ... + X_n < i+1 where the X_j are independent uniform [0, 1] distributions. - See Ehrenborg & Readdy reference.
4. Let f(i, n) = T(i, n)/n!. The f(i, n) are the unique coefficients so that (1/(r-1)^(n+1)) Sum_{i=0..n-1} f(i, n) r^{i+1} = Sum_{j>=0} (j^n)/(r^j) whenever n>=1 and abs(r)>1. (End)
O.g.f. for n-th row: (1-x)^(n+1)*polylog(-n, x)/x. - Vladeta Jovovic, Sep 02 2002
Triangle T(n, k), n>0 and k>0, read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] (positive integers interspersed with 0's) where DELTA is Deléham's operator defined in A084938.
Sum_{k=1..n} T(n, k)*2^k = A000629(n). - Philippe Deléham, Jun 05 2004
From Tom Copeland, Oct 10 2007: (Start)
Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n} E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
(Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
From the relations between the h- and f-polynomials of permutohedra and reciprocals of e.g.f.s described in A049019: (t-1)((t-1)d/dx)^n 1/(t-exp(x)) evaluated at x=0 gives the n-th Eulerian row polynomial in t and the n-th row polynomial in (t-1) of A019538 and A090582. From the Comtet and Copeland references in A139605: ((t+exp(x)-1)d/dx)^(n+1) x gives pairs of the Eulerian polynomials in t as the coefficients of x^0 and x^1 in its Taylor series expansion in x. - Tom Copeland, Oct 05 2008
G.f: 1/(1-x/(1-x*y/1-2*x/(1-2*x*y/(1-3*x/(1-3*x*y/(1-... (continued fraction). - Paul Barry, Mar 24 2010
If n is odd prime, then the following consecutive 2*n+1 terms are 1 modulo n: a((n-1)*(n-2)/2+i), i=0..2*n. This chain of terms is maximal in the sense that neither the previous term nor the following one are 1 modulo n. - _Vladimir Shevelev, Jul 01 2011
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x -(1+2^k*t)*x^2/2 +(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 0 and for A008517 when k = 1.
The e.g.f. B(x,t) := compositional inverse with respect to x of G(0,x,t) = (exp(x)-exp(x*t))/(exp(x*t)-t*exp(x)) = x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... satisfies the autonomous differential equation dB/dx = (1+B)*(1+t*B) = 1 + (1+t)*B + t*B^2.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the Eulerian polynomials: A(n,t) counts plane increasing trees on n vertices where each vertex has outdegree <= 2, the vertices of outdegree 1 come in 1+t colors and the vertices of outdegree 2 come in t colors. An example is given below. Cf. A008517. Applying [Dominici, Theorem 4.1] gives the following method for calculating the Eulerian polynomials: Let f(x,t) = (1+x)*(1+t*x) and let D be the operator f(x,t)*d/dx. Then A(n+1,t) = D^n(f(x,t)) evaluated at x = 0.
(End)
With e.g.f. A(x,t) = G[x,(t-1)]-1 in Copeland's 2008 comment, the compositional inverse is Ainv(x,t) = log(t-(t-1)/(1+x))/(t-1). - Tom Copeland, Oct 11 2011
T(2*n+1,n+1) = (2*n+2)*T(2*n,n). (E.g., 66 = 6*11, 2416 = 8*302, ...) - Gary Detlefs, Nov 11 2011
E.g.f.: (1-y) / (1 - y*exp( (1-y)*x )). - Geoffrey Critzer, Nov 10 2012
From Peter Bala, Mar 12 2013: (Start)
Let {A(n,x)} n>=1 denote the sequence of Eulerian polynomials beginning [1, 1 + x, 1 + 4*x + x^2, ...]. Given two complex numbers a and b, the polynomial sequence defined by R(n,x) := (x+b)^n*A(n+1,(x+a)/(x+b)), n >= 0, satisfies the recurrence equation R(n+1,x) = d/dx((x+a)*(x+b)*R(n,x)). These polynomials give the row generating polynomials for several triangles in the database including A019538 (a = 0, b = 1), A156992 (a = 1, b = 1), A185421 (a = (1+i)/2, b = (1-i)/2), A185423 (a = exp(i*Pi/3), b = exp(-i*Pi/3)) and A185896 (a = i, b = -i).
(End)
E.g.f.: 1 + x/(T(0) - x*y), where T(k) = 1 + x*(y-1)/(1 + (k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013
From Tom Copeland, Sep 18 2014: (Start)
A) Bivariate e.g.f. A(x,a,b)= (e^(ax)-e^(bx))/(a*e^(bx)-b*e^(ax)) = x + (a+b)*x^2/2! + (a^2+4ab+b^2)*x^3/3! + (a^3+11a^2b+11ab^2+b^3)x^4/4! + ...
B) B(x,a,b)= log((1+ax)/(1+bx))/(a-b) = x - (a+b)x^2/2 + (a^2+ab+b^2)x^3/3 - (a^3+a^2b+ab^2+b^3)x^4/4 + ... = log(1+u.*x), with (u.)^n = u_n = h_(n-1)(a,b) a complete homogeneous polynomial, is the compositional inverse of A(x,a,b) in x (see Drake, p. 56).
C) A(x) satisfies dA/dx = (1+a*A)(1+b*A) and can be written in terms of a Weierstrass elliptic function (see Buchstaber & Bunkova).
D) The bivariate Eulerian row polynomials are generated by the iterated derivative ((1+ax)(1+bx)d/dx)^n x evaluated at x=0 (see A145271).
E) A(x,a,b)= -(e^(-ax)-e^(-bx))/(a*e^(-ax)-b*e^(-bx)), A(x,-1,-1) = x/(1+x), and B(x,-1,-1) = x/(1-x).
F) FGL(x,y) = A(B(x,a,b) + B(y,a,b),a,b) = (x+y+(a+b)xy)/(1-ab*xy) is called the hyperbolic formal group law and related to a generalized cohomology theory by Lenart and Zainoulline. (End)
For x > 1, the n-th Eulerian polynomial A(n,x) = (x - 1)^n * log(x) * Integral_{u>=0} (ceiling(u))^n * x^(-u) du. - Peter Bala, Feb 06 2015
Sum_{j>=0} j^n/e^j, for n>=0, equals Sum_{k=1..n} T(n,k)e^k/(e-1)^(n+1), a rational function in the variable "e" which evaluates, approximately, to n! when e = A001113 = 2.71828... - Richard R. Forberg, Feb 15 2015
For a fixed k, T(n,k) ~ k^n, proved by induction. - Ran Pan, Oct 12 2015
From A145271, multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n (1+a*x)*(1+b*x) evaluated at x= 0, i.e., g_0 = 1, g_1 = (a+b), g_2 = 2ab, and g_n = 0 otherwise, to obtain the tridiagonal matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then the m-th bivariate row polynomial of this entry is P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^(m-1) (1, a+b, 2ab, 0, ...)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. Also, P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^m (0, 1, 0, ...)^T. - Tom Copeland, Aug 02 2016
Cumulatively summing a row generates the n starting terms of the n-th differences of the n-th powers. Applying the finite difference method to x^n, these terms correspond to those before constant n! in the lowest difference row. E.g., T(4,k) is summed as 0+1=1, 1+11=12, 12+11=23, 23+1=4!. See A101101, A101104, A101100, A179457. - Andy Nicol, May 25 2024

Extensions

Thanks to Michael Somos for additional comments.
Further comments from Christian G. Bower, May 12 2000

A002866 a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.

Original entry on oeis.org

1, 1, 4, 24, 192, 1920, 23040, 322560, 5160960, 92897280, 1857945600, 40874803200, 980995276800, 25505877196800, 714164561510400, 21424936845312000, 685597979049984000, 23310331287699456000, 839171926357180416000, 31888533201572855808000, 1275541328062914232320000
Offset: 0

Views

Author

Keywords

Comments

Consider the set of n-1 odd numbers from 3 to 2n-1, i.e., {3, 5, ..., 2n-1}. There are 2^(n-1) subsets from {} to {3, 5, 7, ..., 2n-1}; a(n) = the sum of the products of terms of all the subsets. (Product for empty set = 1.) a(4) = 1 + 3 + 5 + 7 + 3*5 + 3*7 + 5*7 + 3*5*7 = 192. - Amarnath Murthy, Sep 06 2002
Also, a(n-1) is the number of ways to lace a shoe that has n pairs of eyelets such that there is a straight (horizontal) connection between all adjacent eyelet pairs. - Hugo Pfoertner, Jan 27 2003
This is also the denominator of the integral of ((1-x^2)^(n-1/2))/(Pi/4) where x ranges from 0 to 1. The numerator is (2*x)!/(x!*2^x). In both cases n starts at 1. E.g., the denominator when n=3 is 24 and the numerator is 15. - Al Hakanson (hawkuu(AT)excite.com), Oct 17 2003
Number of ways to use the elements of {1,...,n} once each to form a sequence of nonempty lists. - Bob Proctor, Apr 18 2005
Row sums of A131222. - Paul Barry, Jun 18 2007
Number of rotational symmetries of an n-cube. The number of all symmetries of an n-cube is A000165. See Egan for signed cycle notation, other notes, tables and animation. - Jonathan Vos Post, Nov 28 2007
1, 4, 24, 192, 1920, ... is the exponential (or binomial) convolution of 1, 1, 3, 15, 105, ... and 1, 3, 15, 105, 945 (A001147). - David Callan, Jul 25 2008
The n-th term of this sequence is the number of regions into which n-dimensional space is partitioned by the 2n hyperplanes of the form x_i=x_j and x_i=-x_j (for 1 <= i < j <= n). - Edward Scheinerman (ers(AT)jhu.edu), May 04 2008
a(n) is the number of ways to seat n churchgoers into pews and then linearly order the nonempty pews. - Geoffrey Critzer, Mar 16 2009
Equals the row sums of A156992. - Geoffrey Critzer, Mar 05 2010
From Gary W. Adamson, May 17 2010: (Start)
Next term in the series = (1, 3, 5, 7, ...) dot (1, 1, 4, 24, ...);
e.g., a(5) = 1920 = (1, 3, 5, 7, 9) dot (1, 1, 4, 24, 192) = (1 + 3 + 20 + 168 + 1728). (End)
a(n) is the number of ways to represent the permutations of {1,2,...,n} in cycle notation, taking into account that we can permute the order of all cycles and also have k ways to write a length-k cycle.
For positive n, a(n) equals the permanent of the n X n matrix with consecutive integers 1 to n along the main diagonal, consecutive integers 2 to n along the subdiagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011
From Dennis P. Walsh, Nov 26 2011: (Start)
Number of ways to arrange n books on consecutive bookshelves.
To derive a(n) = n!2^(n-1), we note that there are n! ways to arrange the books in a row. Then there are 2^(n-1) ways to place the arranged books on consecutive shelves since there are 2^(n-1) ordered partitions of n. Hence a(n) = n!2^(n-1).
Also, a(n) is the number of ways to stack n different alphabet blocks in contiguous stacks.
Furthermore, a(n) is the number of labeled, rooted forests that have (i) each root labeled larger than any nonroot, (ii) each root having exactly one child node, (iii) n non-root nodes, and (iv) each node in the forest with at most one child node.
Example: a(3)=24 since there are 24 arrangements of books b1, b2, and b3 on consecutive shelves, namely, |b1 b2 b3|, |b1 b3 b2|, |b2 b1 b3|, |b2 b3 b1|, |b3 b1 b2|, |b3 b2 b1|, |b1 b2||b3|, |b2 b1| |b3|, |b1 b3||b2|, |b3 b1||b2|, |b2 b3||b1|, |b3 b2||b1|, |b1||b2 b3|,|b1||b3 b2|, |b2||b1 b3|, |b2||b3 b1|, |b3||b1 b2|, |b3||b2 b1|, |b1||b2||b3|, |b1||b3||b2|, |b2||b1||b3|, |b2||b3||b1|, |b3||b1||b2|, and |b3||b2||b1|.
(End)
For n > 3, a(n) is the order of the Coxeter group (also called Weyl group) of type D_n. - Tom Edgar, Nov 05 2013

Examples

			For the shoe lacing: with the notation introduced in A078602 the a(3-1) = 4 "straight" lacings for 3 pairs of eyelets are: 125346, 125436, 134526, 143526. Their mirror images 134256, 143256, 152346, 152436 are not counted.
a(3) = 24 because the 24 rotations of a three-dimensional cube fall into four distinct classes:
(i) the identity, which leaves everything fixed;
(ii) 9 rotations which leave the centers of two faces fixed, comprising rotations of 90, 180 and 270 degrees for each of 3 pairs of faces;
(iii) 6 rotations which leave the centers of two edges fixed, comprising rotations of 180 degrees for each of 6 pairs of edges;
(iv) 8 rotations which leave two vertices fixed, comprising rotations of 120 and 240 degrees for each of 4 pairs of vertices. For an n-cube, rotations can be more complex. For example, in 4 dimensions a rotation can either act in a single plane, such as the x-y plane, while leaving any vectors orthogonal to that plane unchanged, or it can act in two orthogonal planes, performing rotations in both and leaving no vectors fixed. In higher dimensions, there will be room for more planes and more choices as to the number of planes in which a given rotation acts.
		

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6, p. 257.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.26)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections give A002671 and A274304.
Appears in A167584 (n >= 1); equals the row sums of A167594 (n >= 1). - Johannes W. Meijer, Nov 12 2009

Programs

  • FORTRAN
    See Pfoertner link.
    
  • Magma
    [1] cat [2^(n-1)*Factorial(n): n in [1..25]]; // G. C. Greubel, Jun 13 2019
    
  • Maple
    A002866 := n-> `if`(n=0,1,2^(n-1)*n!):
    with(combstruct); SeqSeqL := [S, {S=Sequence(U,card >= 1), U=Sequence(Z,card >=1)},labeled];
    seq(ceil(count(Subset(n))*count(Permutation(n))/2),n=0..17); # Zerinvary Lajos, Oct 16 2006
    G(x):=(1-x)/(1-2*x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..17); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    Join[{1},Table[2^(n-1) n!,{n,25}]] (* Harvey P. Dale, Sep 27 2013 *)
    a[n_] := (-1)^n Hypergeometric2F1Regularized[1, -n, 2 - n, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Apr 26 2024 *)
  • PARI
    a(n)=if(n,n!<<(n-1),1) \\ Charles R Greathouse IV, Jan 13 2012
    
  • PARI
    a(n) = if(n == 0, 1, 2^(n-1)*n!);
    vector(25, n, a(n-1)) \\ Altug Alkan, Oct 18 2015
    
  • Sage
    [1] + [2^(n-1)*factorial(n) for n in (1..25)] # G. C. Greubel, Jun 13 2019

Formula

E.g.f.: (1 - x)/(1 - 2*x). - Paul Barry, May 26 2003, corrected Jun 18 2007
a(n) = n! * A011782(n).
For n >= 1, a(n) = Sum_{i=0..m/2} (-1)^i * binomial(n, i) * (n-2*i)^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) ~ 2^(1/2) * Pi^(1/2) * n^(3/2) * 2^n * e^(-n) * n^n*{1 + 13/12*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
E.g.f. is B(A(x)), where B(x) = 1/(1 - x) and A(x) = x/(1 - x). - Geoffrey Critzer, Mar 16 2009
a(n) = Sum_{k=1..n} A156992(n,k). - Dennis P. Walsh, Nov 26 2011
a(n+1) = Sum_{k=0..n} A132393(n,k)*2^(n+k), n>0. - Philippe Deléham, Nov 28 2011
G.f.: 1 + x/(1 - 4*x/(1 - 2*x/(1 - 6*x/(1 - 4*x/(1 - 8*x/(1 - 6*x/(1 - 10*x/(1 - ... (continued fraction). - Philippe Deléham, Nov 29 2011
a(n) = 2*n*a(n-1) for n >= 2. - Dennis P. Walsh, Nov 29 2011
G.f.: (1 + 1/G(0))/2, where G(k) = 1 + 2*x*k - 2*x*(k + 1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
G.f.: 1 + x/Q(0), m=4, where Q(k) = 1 - m*x*(2*k + 1) - m*x^2*(2*k + 1)*(2*k + 2)/(1 - m*x*(2*k + 2) - m*x^2*(2*k + 2)*(2*k + 3)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
G.f.: 1 + x/(G(0) - x), where G(k) = 1 + x*(k+1) - 4*x*(k + 1)/(1 - x*(k + 2)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(n) = Sum_{k=0..n} L(n,k)*k!; L(n,k) are the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = round(Sum_{k >= 1} log(k)^n/k^(3/2))/4, for n >= 1, which is related to the n-th derivative of zeta(x) evaluated at x = 3/2. - Richard R. Forberg, Jan 02 2015
a(n) = n!*hypergeom([-n+1], [], -1) for n>=1. - Peter Luschny, Apr 08 2015
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n >= 0} 1/a(n) = 2*sqrt(e) - 1.
Sum_{n >= 0} (-1)^n/a(n) = 2/sqrt(e) - 1. (End)

A123072 Bishops on an 8n+1 X 8n+1 board (see Robinson paper for details).

Original entry on oeis.org

1, 2, 72, 7200, 1411200, 457228800, 221298739200, 149597947699200, 134638152929280000, 155641704786247680000, 224746621711341649920000, 396453040698806670458880000, 838894634118674914690990080000, 2097236585296687286727475200000000, 6115541882725140128097317683200000000
Offset: 0

Views

Author

N. J. A. Sloane, Sep 28 2006

Keywords

Crossrefs

Programs

  • Maple
    For Maple program see A005635.
  • Mathematica
    Table[(((2 n)!/n!)^2)/2, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
    Table[SeriesCoefficient[Series[1/2 + EllipticK[16 x]/Pi, {x, 0, 20}],n] n! n!, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)

Formula

From_Reinhard Zumkeller_, Feb 16 2010: (Start)
a(n) = ceiling((((2*n)! / n!)^2) / 2).
a(n) = A001700(n-1) * A010050(n). (End)
From Benedict W. J. Irwin, Jun 05 2016: (Start)
G.f. for a(n)/(n!)^2 : 1/2 + EllipticK(16*x)/Pi, which is the E.g.f for A187535.
G.f. for a(n)/(n!)^3 : 2F2(1/2, 1/2; 1, 1; 16z)/2.
a(n) = n!*A187535(n) = binomial(2*n-1, n-1)*(2*n)!.
(End)
a(n) = A156992(2n,n). - Alois P. Heinz, Apr 30 2017
a(n) ~ asy(2*n-1) where asy(n) = (2*n/e)^n*(18*n + 6 + 1/n)/9. - Peter Luschny, Dec 05 2019
Sum_{n>=0} 1/a(n) = 1 + StruveL(0, 1/2)*Pi/4, where StruveL is the modified Struve function. - Amiram Eldar, Dec 04 2022

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 30 2017

A200978 Number of ways to arrange n books on 3 consecutive shelves leaving none of the shelves empty.

Original entry on oeis.org

6, 72, 720, 7200, 75600, 846720, 10160640, 130636800, 1796256000, 26345088000, 410983372800, 6799906713600, 118998367488000, 2196892938240000, 42682491371520000, 870722823979008000, 18611700362551296000, 416026243398205440000
Offset: 3

Views

Author

Dennis P. Walsh, Nov 26 2011

Keywords

Comments

To derive a(n), we note that there are n! ways to arrange n books in a row and there are binomial(n-1,2) ways to place the n arranged books on 3 consecutive shelves (since binomial(n-1,2) is the number of compositions of n with 3 summands). Hence a(n) = n!*binomial(n-1,2) for n >= 3.
The number of ways to arrange n books on two nonempty bookshelves is given by A062119(n).

Examples

			a(4)=72 since there are 72 ways to arrange books b1, b2, b3, and b4 on 3 consecutive shelves s1, s2, and s3. Note that there are 24 arrangements with two books on shelf s_i (i=1,2,3) and one book on each of the other two shelves. (For instance, there are 12 ways to select and permute the two books for s1 and 2 ways to select the single books for s2 and s3.) Hence there are 3(24)=71 book arrangements.
		

Crossrefs

Cf. A156992.

Programs

  • Maple
    seq(n!*C(n-1,2),n=3..20);
  • Mathematica
    nn=20;Drop[Range[0,nn]!CoefficientList[Series[(x/(1-x))^3,{x,0,nn}],x],3] (* Geoffrey Critzer, Sep 02 2013 *)

Formula

a(n) = n!*binomial(n-1,2) = n!*(n-1)*(n-2)/2, n >= 3.
a(n) = A156992(n,3).
E.g.f.: x^3/(1-x)^3.
a(n) = A001754(n)*3!. - Geoffrey Critzer, Sep 02 2013

A200979 Number of ways to arrange n books on 4 consecutive bookshelves, leaving no shelf empty.

Original entry on oeis.org

24, 480, 7200, 100800, 1411200, 20321280, 304819200, 4790016000, 79035264000, 1369944576000, 24932991283200, 475993469952000, 9519869399040000, 199184959733760000, 4353614119895040000, 99262401933606912000, 2357482045923164160000
Offset: 4

Views

Author

Dennis P. Walsh, Nov 26 2011

Keywords

Comments

To derive a(n) = n!*binomial(n-1,3), we note that there are n! ways to arrange the books in a row.
Then there are binomial(n-1,3) ways to place the arranged books on 4 consecutive shelves since there are binomial(n-1,3) compositions of n with 4 summands. Hence a(n) = n!*binomial(n-1,4).
We note that a(n) is the fourth column of triangle A156992, the number of ways to arrange n books on k consecutice bookshelves, leaving no shelves empty.

Examples

			a(5) = 480 since there are 480 ways to arrange books b1, b2, b3, b4, and b5 on shelves s1, s2, s3, and s4. In this case, one shelf will hold two books, and the other three shelves will hold one each. There are 4 ways to choose the shelf for two books; there are 20 ways to choose the two books and place them in order on the two-book shelf; there are 6 ways to arrange the other three books on the other three shelves. Hence a(5) = 4*20*6 = 480.
		

Programs

  • Maple
    seq(n!*binomial(n-1,3)n=4..20);

Formula

a(n) = n!*binomial(n-1,3) = n!*(n-1)*(n-2)*(n-3)/6 for n >= 4.
E.g.f.: x^4/(1-x)^4.
a(n) = A156992(n,4).
Showing 1-5 of 5 results.