A156995 Triangle T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2, read by rows.
2, 1, 2, 2, 4, 2, 6, 12, 9, 2, 24, 48, 40, 16, 2, 120, 240, 210, 100, 25, 2, 720, 1440, 1296, 672, 210, 36, 2, 5040, 10080, 9240, 5040, 1764, 392, 49, 2, 40320, 80640, 74880, 42240, 15840, 4032, 672, 64, 2, 362880, 725760, 680400, 393120, 154440, 42768
Offset: 0
Examples
Triangle starts with: n=0: 2; n=1: 1, 2; n=2: 2, 4, 2; n=3: 6, 12, 9, 2; n=4: 24, 48, 40, 16, 2; n=5: 120, 240, 210, 100, 25, 2; n=6: 720, 1440, 1296, 672, 210, 36, 2; n=7: 5040, 10080, 9240, 5040, 1764, 392, 49, 2; n=8: 40320, 80640, 74880, 42240, 15840, 4032, 672, 64, 2; ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 197-199
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Row sums are A300484.
Programs
-
Magma
A156995:= func< n,k | n eq 0 select 2 else 2*n*Factorial(n-k)*Binomial(2*n-k, k)/(2*n-k) >; [A156995(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
-
Mathematica
T[n_, k_]:= If[n==0, 2, 2*n*Binomial[2*n-k, k]*(n-k)!/(2*n-k)]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 14 2021 *)
-
Sage
def A156995(n,k): return 2 if (k==n) else 2*n*factorial(n-k)*binomial(2*n-k,k)/(2*n-k) flatten([[A156995(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
Formula
T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2.
Extensions
Edited and changed T(0,0) = 2 (to make formula continuous and constant along the diagonal k = n) by Max Alekseyev, Mar 06 2018
Comments