cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156995 Triangle T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2, read by rows.

Original entry on oeis.org

2, 1, 2, 2, 4, 2, 6, 12, 9, 2, 24, 48, 40, 16, 2, 120, 240, 210, 100, 25, 2, 720, 1440, 1296, 672, 210, 36, 2, 5040, 10080, 9240, 5040, 1764, 392, 49, 2, 40320, 80640, 74880, 42240, 15840, 4032, 672, 64, 2, 362880, 725760, 680400, 393120, 154440, 42768
Offset: 0

Views

Author

Roger L. Bagula, Feb 20 2009

Keywords

Comments

For n>=1, o.g.f. of n-th row is a polynomial p(x,n) = Sum_{k=0..n} ( 2*n*(n-k)! * binomial(2*n-k, k)/(2*n-k)) * x^k. These polynomials are hit polynomials for the reduced ménage problem (Riordan 1958).

Examples

			Triangle starts with:
  n=0:     2;
  n=1:     1,     2;
  n=2:     2,     4,     2;
  n=3:     6,    12,     9,     2;
  n=4:    24,    48,    40,    16,     2;
  n=5:   120,   240,   210,   100,    25,    2;
  n=6:   720,  1440,  1296,   672,   210,   36,   2;
  n=7:  5040, 10080,  9240,  5040,  1764,  392,  49,  2;
  n=8: 40320, 80640, 74880, 42240, 15840, 4032, 672, 64, 2;
  ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 197-199

Crossrefs

Row sums are A300484.

Programs

  • Magma
    A156995:= func< n,k | n eq 0 select 2 else 2*n*Factorial(n-k)*Binomial(2*n-k, k)/(2*n-k) >;
    [A156995(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
    
  • Mathematica
    T[n_, k_]:= If[n==0, 2, 2*n*Binomial[2*n-k, k]*(n-k)!/(2*n-k)];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 14 2021 *)
  • Sage
    def A156995(n,k): return 2 if (k==n) else 2*n*factorial(n-k)*binomial(2*n-k,k)/(2*n-k)
    flatten([[A156995(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021

Formula

T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2.

Extensions

Edited and changed T(0,0) = 2 (to make formula continuous and constant along the diagonal k = n) by Max Alekseyev, Mar 06 2018