A300484
a(n) = 2 * Integral_{t>=0} T_n(t/2+1) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 3, 8, 29, 130, 697, 4376, 31607, 258690, 2368847, 24011832, 267025409, 3233119106, 42346123861, 596617706344, 8998126507307, 144651872924162, 2469279716419035, 44609768252582312, 850345380011532261, 17056474009400181122
Offset: 0
-
{ A300484(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+2)/2)), x, 1); }
A300480
Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t+m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 2, 1, 2, 2, 0, 2, 3, 3, 3, 2, 4, 8, 10, 18, 2, 5, 15, 29, 47, 95, 2, 6, 24, 66, 130, 256, 592, 2, 7, 35, 127, 327, 697, 1610, 4277, 2, 8, 48, 218, 722, 1838, 4376, 11628, 35010, 2, 9, 63, 345, 1423, 4459, 11770, 31607, 95167, 320589, 2, 10, 80, 514, 2562, 9820, 30248, 85634, 258690
Offset: 0
Array starts with:
m=0: 2, 1, 0, 3, 18, 95, 592, ...
m=1: 2, 2, 3, 10, 47, 256, 1610, ...
m=2: 2, 3, 8, 29, 130, 697, 4376, ...
m=3: 2, 4, 15, 66, 327, 1838, 11770, ...
m=4: 2, 5, 24, 127, 722, 4459, 30248, ...
...
Values for m<=0 are given in
A300481.
-
{ A300480(m,n) = if(n==0,return(2)); subst( serlaplace( 2*polchebyshev(n,1,(x+m)/2)), x, 1); }
A300481
Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t-m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 2, 1, 2, 0, 0, 2, -1, -1, 3, 2, -2, 0, 2, 18, 2, -3, 3, 1, 7, 95, 2, -4, 8, -6, 2, 34, 592, 2, -5, 15, -25, 15, 13, 218, 4277, 2, -6, 24, -62, 82, -28, 80, 1574, 35010, 2, -7, 35, -123, 263, -269, 106, 579, 12879, 320589
Offset: 0
Array starts with:
m=0: 2, 1, 0, 3, 18, 95, 592, ...
m=1: 2, 0, -1, 2, 7, 34, 218, ...
m=2: 2, -1, 0, 1, 2, 13, 80, ...
m=3: 2, -2, 3, -6, 15, -28, 106, ...
m=4: 2, -3, 8, -25, 82, -269, 920, ...
...
Values for m<=0 are given in
A300480.
A156996
Triangle T(n, k) = coefficients of p(n,x), where p(n,x) = Sum_{j=0..n} (2*n*(n-j)!/(2*n-j)) * binomial(2*n-j, j) * (x-1)^j and p(0,x) = 1, read by rows.
Original entry on oeis.org
1, -1, 2, 0, 0, 2, 1, 0, 3, 2, 2, 8, 4, 8, 2, 13, 30, 40, 20, 15, 2, 80, 192, 210, 152, 60, 24, 2, 579, 1344, 1477, 994, 469, 140, 35, 2, 4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2, 43387, 97434, 104256, 70152, 32958, 11268, 2856, 504, 63, 2, 439792, 976000, 1036050, 695760, 328920, 115056, 30300, 6000, 840, 80, 2
Offset: 0
Triangle begins as:
1;
-1, 2;
0, 0, 2;
1, 0, 3, 2;
2, 8, 4, 8, 2;
13, 30, 40, 20, 15, 2;
80, 192, 210, 152, 60, 24, 2;
579, 1344, 1477, 994, 469, 140, 35, 2;
4738, 10800, 11672, 7888, 3660, 1232, 280, 48, 2;
43387, 97434, 104256, 70152, 32958, 11268, 2856, 504, 63, 2;
439792, 976000, 1036050, 695760, 328920, 115056, 30300, 6000, 840, 80, 2;
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 197-199
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
- Anthony C. Robin, 90.72 Circular Wife Swapping, The Mathematical Gazette, Vol. 90, No. 519 (Nov., 2006), pp. 471-478.
- L. Takacs, On the probleme des menages, Discr. Math. 36 (3) (1981) 289-297, Table 1.
-
A156996:= func< n,k | n eq 0 select 1 else (&+[(-1)^(j-k)*(2*n*Factorial(n-j)/(2*n-j))*Binomial(j, k)*Binomial(2*n-j, j): j in [k..n]]) >;
[A156996(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
-
(* first program *)
Table[CoefficientList[If[n==0, 1, Sum[Binomial[2*n-k, k]*(n-k)!*(2*n/(2*n-k))*(x- 1)^k, {k,0,n}]], x], {n,0,12}]//Flatten
(* Second program *)
T[n_, k_]:= If[n==0, 1, Sum[(-1)^(j-k)*(2*n*(n-j)!/(2*n-j))*Binomial[j, k]*Binomial[2*n-j, j], {j,k,n}]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 14 2021 *)
-
def A156996(n,k): return 1 if (n==0) else sum( (-1)^(j-k)*(2*n*factorial(n-j)/(2*n-j))*binomial(j, k)*binomial(2*n-j, j) for j in (k..n) )
flatten([[A156996(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
Showing 1-4 of 4 results.
Comments