A157010 a(n) = 1681*n^2 - 756*n + 85.
1010, 5297, 12946, 23957, 38330, 56065, 77162, 101621, 129442, 160625, 195170, 233077, 274346, 318977, 366970, 418325, 473042, 531121, 592562, 657365, 725530, 797057, 871946, 950197, 1031810, 1116785, 1205122, 1296821, 1391882, 1490305
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([1..40], n-> 1681*n^2 - 756*n + 85); # G. C. Greubel, Feb 23 2019
-
Magma
I:=[1010, 5297, 12946]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Maple
A157010:=n->1681*n^2 - 756*n + 85; seq(A157010(n), n=1..30); # Wesley Ivan Hurt, Jan 24 2014
-
Mathematica
LinearRecurrence[{3,-3,1},{1010,5297,12946},30] Table[1681n^2-756n+85,{n,40}] (* Harvey P. Dale, Sep 25 2024 *)
-
PARI
a(n) = 1681*n^2 - 756*n + 85
-
Sage
[1681*n^2 - 756*n + 85 for n in (1..40)] # G. C. Greubel, Feb 23 2019
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f: x*(1010 + 2267*x + 85*x^2)/(1-x)^3.
E.g.f.: -85 + (85 + 925*x + 1681*x^2)*exp(x). - G. C. Greubel, Feb 23 2019
Comments