A157012
Riordan's general Eulerian recursion: T(n,k) = (k+2)*T(n-1, k) + (n-k) * T(n-1, k-1), with T(n,0) = 1, T(n,n) = 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 14, 1, 0, 1, 58, 110, 33, 1, 0, 1, 179, 672, 495, 72, 1, 0, 1, 543, 3583, 5163, 1917, 151, 1, 0, 1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0, 1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0
Offset: 0
Triangle begins with:
1.
1, 0.
1, 1, 0.
1, 5, 1, 0.
1, 18, 14, 1, 0.
1, 58, 110, 33, 1, 0.
1, 179, 672, 495, 72, 1, 0.
1, 543, 3583, 5163, 1917, 151, 1, 0.
1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0.
1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] +(n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 0]:= 1; T[n_, n_]:= 0; T[n_, k_]:= T[n, k] = (k+2)*T[n-1, k] +(n-k) *T[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==0, 1, if(k==n, 0, (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)))};
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==0): return 1
elif (k==n): return 0
else: return (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 22 2019
A157013
Riordan's general Eulerian recursion: T(n, k) = (k+2)*T(n-1, k) + (n-k-1) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-1)^(n-1).
Original entry on oeis.org
1, 1, -1, 1, -4, 1, 1, -15, 5, -1, 1, -58, 10, -6, 1, 1, -229, -66, -26, 7, -1, 1, -912, -1017, -288, 23, -8, 1, 1, -3643, -8733, -4779, -415, -41, 9, -1, 1, -14566, -61880, -63606, -17242, -1158, 40, -10, 1, 1, -58257, -396796, -691036, -375118, -60990, -1956, -60, 11, -1
Offset: 1
Triangle begins with:
1.
1, -1.
1, -4, 1.
1, -15, 5, -1.
1, -58, 10, -6, 1.
1, -229, -66, -26, 7, -1.
1, -912, -1017, -288, 23, -8, 1.
1, -3643, -8733, -4779, -415, -41, 9, -1.
1, -14566, -61880, -63606, -17242, -1158, 40, -10, 1.
1, -58257, -396796, -691036, -375118, -60990, -1956, -60, 11, -1.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_,1]:=1; T[n_,n_]:=(-1)^(n-1); T[n_,k_]:= T[n,k] = (k+2)*T[n-1,k] + (n-k-1)*T[n-1,k-1]; Table[T[n,k], {n,1,10}, {k,1,n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==1, 1, if(k==n, (-1)^(n-1), (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1)))};
for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==1): return 1
elif (k==n): return (-1)^(n-1)
else: return (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Feb 22 2019
A180246
Triangle T(n,k) read by rows: T(n,k) = Sum_{j=0..k} (-1)^j *binomial(n+1,j)*(k+2-j)^n, 0 <= k < n.
Original entry on oeis.org
2, 4, -3, 8, -5, 4, 16, 1, 11, -5, 32, 51, 46, -14, 6, 64, 281, 337, 22, 22, -7, 128, 1163, 2472, 1121, 176, -27, 8, 256, 4257, 15703, 15493, 4419, 163, 37, -9, 512, 14563, 88354, 155980, 88486, 14398, 622, -44, 10, 1024, 47785, 455357, 1310024, 1310816, 454730, 48170, 848, 56, -11
Offset: 1
Triangle begins with:
2;
4, -3;
8, -5, 4;
16, 1, 11, -5;
32, 51, 46, -14, 6;
64, 281, 337, 22, 22, -7;
128, 1163, 2472, 1121, 176, -27, 8;
256, 4257, 15703, 15493, 4419, 163, 37, -9;
512, 14563, 88354, 155980, 88486, 14398, 622, -44, 10;
1024, 47785, 455357, 1310024, 1310816, 454730, 48170, 848, 56, -11;
...
- B. Harris and C J. Park, A generalization of Eulerian numbers with a probabilistic Application, Statistics and Probability Letters 20 (1994), page 40
-
Flat(List([1..12], n-> List([0..n-1], k-> Sum([0..k], j-> (-1)^j*Binomial(n+1, j)*(k-j+2)^n )))); # G. C. Greubel, Feb 23 2019
-
[[(&+[(-1)^j*Binomial(n+1, j)*(k-j+2)^n: j in [0..k]]): k in [0..n-1]]: n in [1..12]]; // G. C. Greubel, Feb 23 2019
-
A180246 := proc(n,k) add( (-1)^v*binomial(n+1,v)*(k+2-v)^n,v=0..k) ; end proc: # R. J. Mathar, Jan 29 2011
P := proc(n,x) option remember; if n = 0 then 1 else
(n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
expand(%) fi end:
A180246 := (n,k) -> coeff(P(n,x),x,k):
seq(print(seq(A180246(n,k),k=0..n-1)),n=0..10); # Peter Luschny, Mar 07 2014
-
t[n_, j_, d_]:= Sum[(-1)^v *Binomial[n+1, v](j+d-v)^n, {v, 0, j}];
Table[Flatten[Table[Table[t[n,k,m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
(* This sequence corresponds to m=2 *)
Table[Sum[(-1)^j*Binomial[n+1, j]*(k-j+2)^n, {j,0,k}], {n,1,12}, {k,0,n-1}]//Flatten
-
{T(n,k) = sum(j=0,k, (-1)^j*binomial(n+1, j)*(k-j+2)^n)};
for(n=1,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 23 2019
-
[[sum((-1)^j*binomial(n+1, j)*(k-j+2)^n for j in (0..k)) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Feb 23 2019
A306547
Triangle read by rows, defined by Riordan's general Eulerian recursion: T(n, k) = (k+3)*T(n-1, k) + (n-k-2) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).
Original entry on oeis.org
1, 1, -2, 1, -11, 4, 1, -55, 35, -8, 1, -274, 210, -91, 16, 1, -1368, 986, -637, 219, -32, 1, -6837, 3180, -3473, 1752, -507, 64, 1, -34181, -1431, -17951, 10543, -4563, 1147, -128, 1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256, 1, -854494, -1726360, -1490890, -2314, -177832, 84176, -28105, 5627, -512
Offset: 1
Triangle begins with:
1.
1, -2.
1, -11, 4.
1, -55, 35, -8.
1, -274, 210, -91, 16.
1, -1368, 986, -637, 219, -32.
1, -6837, 3180, -3473, 1752, -507, 64.
1, -34181, -1431, -17951, 10543, -4563, 1147, -128.
1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215.
-
e[n_, 0, m_]:= 1; (* Example for m=3 *)
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 1]:= 1; T[n_, n_]:= (-2)^(n-1); T[n_, k_]:= T[n, k] = (k+3)*T[n-1, k] + (n-k-2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten
-
{T(n, k) = if(k==1, 1, if(k==n, (-2)^(n-1), (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)))};
for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")))
-
def T(n, k):
if (k==1): return 1
elif (k==n): return (-2)^(n-1)
else: return (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..12)]
Showing 1-4 of 4 results.
Comments