A157011
Triangle T(n,k) read by rows: T(n,k)= (k-1)*T(n-1,k) + (n-k+2)*T(n-1, k-1), with T(n,1)=1, for 1 <= k <= n, n >= 1.
Original entry on oeis.org
1, 1, 2, 1, 5, 4, 1, 9, 23, 8, 1, 14, 82, 93, 16, 1, 20, 234, 607, 343, 32, 1, 27, 588, 2991, 3800, 1189, 64, 1, 35, 1365, 12501, 30155, 21145, 3951, 128, 1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256, 1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512
Offset: 1
The triangle starts in row n=1 as:
1;
1, 2;
1, 5, 4;
1, 9, 23, 8;
1, 14, 82, 93, 16;
1, 20, 234, 607, 343, 32;
1, 27, 588, 2991, 3800, 1189, 64;
1, 35, 1365, 12501, 30155, 21145, 3951, 128;
1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256;
1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512;
-
A157011 := proc(n,k) if k <0 or k >= n then 0; elif k =0 then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc: # R. J. Mathar, Jun 18 2011
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 1]:= 1; T[n_, n_]:= 2^(n-1); T[n_, k_]:= T[n, k] = (k-1)*T[n-1, k] + (n-k+2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==1, 1, if(k==n, 2^(n-1), (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)))};
for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==1):
return 1
elif (k==n):
return 2^(n-1)
else: return (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Feb 22 2019
A157012
Riordan's general Eulerian recursion: T(n,k) = (k+2)*T(n-1, k) + (n-k) * T(n-1, k-1), with T(n,0) = 1, T(n,n) = 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 14, 1, 0, 1, 58, 110, 33, 1, 0, 1, 179, 672, 495, 72, 1, 0, 1, 543, 3583, 5163, 1917, 151, 1, 0, 1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0, 1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0
Offset: 0
Triangle begins with:
1.
1, 0.
1, 1, 0.
1, 5, 1, 0.
1, 18, 14, 1, 0.
1, 58, 110, 33, 1, 0.
1, 179, 672, 495, 72, 1, 0.
1, 543, 3583, 5163, 1917, 151, 1, 0.
1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0.
1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] +(n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 0]:= 1; T[n_, n_]:= 0; T[n_, k_]:= T[n, k] = (k+2)*T[n-1, k] +(n-k) *T[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==0, 1, if(k==n, 0, (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)))};
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==0): return 1
elif (k==n): return 0
else: return (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 22 2019
A306547
Triangle read by rows, defined by Riordan's general Eulerian recursion: T(n, k) = (k+3)*T(n-1, k) + (n-k-2) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-2)^(n-1).
Original entry on oeis.org
1, 1, -2, 1, -11, 4, 1, -55, 35, -8, 1, -274, 210, -91, 16, 1, -1368, 986, -637, 219, -32, 1, -6837, 3180, -3473, 1752, -507, 64, 1, -34181, -1431, -17951, 10543, -4563, 1147, -128, 1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256, 1, -854494, -1726360, -1490890, -2314, -177832, 84176, -28105, 5627, -512
Offset: 1
Triangle begins with:
1.
1, -2.
1, -11, 4.
1, -55, 35, -8.
1, -274, 210, -91, 16.
1, -1368, 986, -637, 219, -32.
1, -6837, 3180, -3473, 1752, -507, 64.
1, -34181, -1431, -17951, 10543, -4563, 1147, -128.
1, -170900, -145310, -129950, 48442, -30524, 11470, -2555, 256.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215.
-
e[n_, 0, m_]:= 1; (* Example for m=3 *)
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 1]:= 1; T[n_, n_]:= (-2)^(n-1); T[n_, k_]:= T[n, k] = (k+3)*T[n-1, k] + (n-k-2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]//Flatten
-
{T(n, k) = if(k==1, 1, if(k==n, (-2)^(n-1), (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)))};
for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")))
-
def T(n, k):
if (k==1): return 1
elif (k==n): return (-2)^(n-1)
else: return (k+3)*T(n-1, k) + (n-k-2)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..12)]
Showing 1-3 of 3 results.
Comments