A157013 Riordan's general Eulerian recursion: T(n, k) = (k+2)*T(n-1, k) + (n-k-1) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-1)^(n-1).
1, 1, -1, 1, -4, 1, 1, -15, 5, -1, 1, -58, 10, -6, 1, 1, -229, -66, -26, 7, -1, 1, -912, -1017, -288, 23, -8, 1, 1, -3643, -8733, -4779, -415, -41, 9, -1, 1, -14566, -61880, -63606, -17242, -1158, 40, -10, 1, 1, -58257, -396796, -691036, -375118, -60990, -1956, -60, 11, -1
Offset: 1
Examples
Triangle begins with: 1. 1, -1. 1, -4, 1. 1, -15, 5, -1. 1, -58, 10, -6, 1. 1, -229, -66, -26, 7, -1. 1, -912, -1017, -288, 23, -8, 1. 1, -3643, -8733, -4779, -415, -41, 9, -1. 1, -14566, -61880, -63606, -17242, -1158, 40, -10, 1. 1, -58257, -396796, -691036, -375118, -60990, -1956, -60, 11, -1.
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Mathematica
e[n_, 0, m_]:= 1; e[n_, k_, m_]:= 0 /; k >= n; e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m]; Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}] T[n_,1]:=1; T[n_,n_]:=(-1)^(n-1); T[n_,k_]:= T[n,k] = (k+2)*T[n-1,k] + (n-k-1)*T[n-1,k-1]; Table[T[n,k], {n,1,10}, {k,1,n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
PARI
{T(n, k) = if(k==1, 1, if(k==n, (-1)^(n-1), (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1)))}; for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
Sage
def T(n, k): if (k==1): return 1 elif (k==n): return (-1)^(n-1) else: return (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1) [[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Feb 22 2019
Formula
e(n,k,m)= (k+m)*e(n-1, k, m) + (n-k+1-m)*e(n-1, k-1, m) with m=3.
T(n, k) = (k+2)*T(n-1, k) + (n-k-1)*T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-1)^(n-1). - G. C. Greubel, Feb 22 2019
Comments