A157017 Numbers n such that n! can be written as a product of distinct factors in the range from n+1 to 2n, inclusive.
3, 6, 8, 11, 14, 15, 18, 21, 22, 25, 28, 29, 32, 35, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56, 59, 60, 61, 63, 64, 67, 68, 69, 73, 74, 76, 77, 78, 86, 89, 90, 94, 95, 98, 99, 103, 104, 107, 116, 117, 122, 123, 124, 125, 126, 127, 131, 145, 146, 149, 158, 159, 179, 183, 187, 188, 189, 191, 194, 203, 207, 215, 218, 219, 221, 222, 223, 224, 229, 230, 233, 238, 239
Offset: 1
Examples
3! = 6. [Vaughan, quoted by Erdos] 6! = 8*9*10. [Erdos] 8! = 12*14*15*16. [Vaughan, quoted by Erdos] 11! = 15*16*18*20*21*22. [Vaughan, quoted by Erdos] 14! = 16*21*22*24*25*26*27*28. [Erdos] 15! = 16*18*20*21*22*25*26*27*28. [Vaughan, quoted by Erdos] 18! = 20*21*22*24*26*27*30*32*34*35*36 = cp(18) / (25*28*33). 18! = 20*21*24*25*26*27*28*32*33*34*36 = cp(18) / (22*30*35). 18! = 21*22*24*25*26*27*28*30*32*34*36 = cp(18) / (20*33*35). 21! = 24*25*27*28*32*33*34*35*36*38*39*40*42 = cp(21) / (22*26*30). 22! = 24*25*26*27*28*30*32*33*34*35*36*38*42*44 = cp(22) / (39*40). 25! = 26*27*30*32*33*34*35*36*38*40*44*45*46*48*49*50 = cp(25) / (28*39*42). 25! = 27*28*30*32*33*34*35*38*39*40*42*44*45*46*48*50 = cp(25) / (26*36*49). 28! = 30*32*33*36*38*39*40*42*45*46*48*49*50*51*52*54*55*56. 29! = 30*32*33*34*35*36*39*40*42*44*45*46*48*49*50*52*54*57*58. 29! = 30*32*33*35*36*38*39*40*42*44*45*46*48*49*50*51*52*54*58. 32! = 34*35*36*39*40*42*44*45*46*48*50*52*54*55*56*57*58*60*62*63*64 32! = 35*36*38*39*40*42*44*45*46*48*50*51*52*54*55*56*58*60*62*63*64 35! = 36*40*44*45*48*49*50*51*52*54*55*56*57*58*60*62*63*64*65*66*68*69*70 39! = 40*42*45*48*51*52*54*55*56*57*58*60*62*63*64*65*66*68*69*70*72*74*75*76*77*78 39! = 42*44*45*48*50*51*52*54*56*57*58*60*62*63*64*65*66*68*69*70*72*74*75*76*77*78 40! = 42*44*45*48*49*50*51*52*54*55*56*57*58*60*62*63*64*65*66*68*69*72*74*75*76*78*80. [Vaughan, quoted by Erdos] 43! = 44*48*49*50*52*54*57*58*60*62*63*64*65*66*68*69*70*72*74*75*76*77*78*80*81*82*84*85*86 (and 2 other ways) 44! = 45*46*48*49*50*51*52*54*55*56*57*60*62*64*65*66*70*72*74*76*77*78*80*81*82*84*85*86*87*88 (and 16 other ways) See link for further example.
References
- P. Erdos, R. K. Guy and J. L. Selfridge, Another property of 239 and some related questions, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Man., 1981), Congr. Numer. 34 (1982), 243-257.
Links
- Ray Chandler, Detailed examples for terms in A157017
- P. Erdos, Consecutive integers, Eureka, The Archimedeans' Journal, 38 (1975/76), 3-8.
- P. Erdos, Consecutive integers (1975) [Cached copy]
- P. Erdos, R. K. Guy and J. L. Selfridge, Another property of 239 and some related questions (1982)
- T. D. Noe, Representations of n!
Programs
-
PARI
is_A237594(n,m=2*n,p=binomial(2*n,n)/prod(k=primepi(n)+1,primepi(n*2),prime(k)))={forstep(f=m,n+1,-1, p%f==0 && (p==f || is_A237594(n,f-1,p/f)) && return(1))} \\ M. F. Hasler, Feb 10 2014
Formula
A number n is in the sequence iff A000984(n)*A034386(n)/A034386(2n) is the product of distinct composite numbers in {n+1,...,2n}. - M. F. Hasler, Feb 10 2014
Extensions
More precise definition and term 18 from R. J. Mathar, Feb 21 2009 Terms 21 through 73 added by Ray Chandler and T. D. Noe, further terms up to 158 by T. D. Noe, Feb 24 2009
Terms 159 to 239 added by Ray Chandler and T. D. Noe, Mar 01 2009
Erroneous term 5 removed by Markus Koenig (markus(AT)stber-koenig.de), Mar 13 2010
Erroneous terms 75 and 88 removed by T. D. Noe, Apr 01 2010
Terms up to 160 double-checked by M. F. Hasler, Feb 10 2014
Comments