A157019 a(n) = Sum_{d|n} binomial(n/d+d-2, d-1).
1, 2, 2, 4, 2, 8, 2, 10, 8, 12, 2, 34, 2, 16, 32, 38, 2, 62, 2, 92, 58, 24, 2, 210, 72, 28, 92, 198, 2, 394, 2, 274, 134, 36, 422, 776, 2, 40, 184, 1142, 2, 1178, 2, 618, 1232, 48, 2, 2634, 926, 1482, 308, 964, 2, 2972, 2004, 4610, 382, 60, 2, 8576, 2, 64, 6470, 5130
Offset: 1
Examples
a(4) = 4 = 1 + 2 + 0 + 1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paul D. Hanna)
Programs
-
Maple
A157019 := proc(n) add( binomial(n/d+d-2, d-1), d=numtheory[divisors](n) ) ; end:
-
Mathematica
a[n_] := Sum[Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}]; Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
-
PARI
{a(n)=polcoeff(sum(m=1,n,x^m/(1-x^m+x*O(x^n))^m),n)} \\ Paul D. Hanna, Mar 01 2009
Formula
G.f.: A(x) = Sum_{n>=1} x^n/(1 - x^n)^n. - Paul D. Hanna, Mar 01 2009
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, gcd(n,k) - 1) / phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, n/gcd(n,k) - 1) / phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, May 19 2021
Comments