cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157019 a(n) = Sum_{d|n} binomial(n/d+d-2, d-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 10, 8, 12, 2, 34, 2, 16, 32, 38, 2, 62, 2, 92, 58, 24, 2, 210, 72, 28, 92, 198, 2, 394, 2, 274, 134, 36, 422, 776, 2, 40, 184, 1142, 2, 1178, 2, 618, 1232, 48, 2, 2634, 926, 1482, 308, 964, 2, 2972, 2004, 4610, 382, 60, 2, 8576, 2, 64, 6470, 5130
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2009

Keywords

Comments

Equals row sums of triangle A156348. - Gary W. Adamson & Mats Granvik, Feb 21 2009
a(n) = 2 iff n is prime.
The binomial transform (note the offset) is 0, 1, 4, 11, 28, 67, 156, 359, 818, 1847, 4146, 9275, ... - R. J. Mathar, Mar 03 2013
a(n) is the number of distinct paths that connect the starting (1,1) point to the hyperbola with equation (x * y = n), when the choice for a move is constrained to belong to { (x := x + 1), (y := y + 1) }. - Luc Rousseau, Jun 27 2017

Examples

			a(4) = 4 = 1 + 2 + 0 + 1.
		

Crossrefs

Cf. A081543, A018818, A156838 (Mobius transform).
Cf. A156348.
Cf. A000010.

Programs

  • Maple
    A157019 := proc(n) add( binomial(n/d+d-2, d-1), d=numtheory[divisors](n) ) ; end:
  • Mathematica
    a[n_] := Sum[Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    {a(n)=polcoeff(sum(m=1,n,x^m/(1-x^m+x*O(x^n))^m),n)} \\ Paul D. Hanna, Mar 01 2009

Formula

G.f.: A(x) = Sum_{n>=1} x^n/(1 - x^n)^n. - Paul D. Hanna, Mar 01 2009
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, gcd(n,k) - 1) / phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, n/gcd(n,k) - 1) / phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, May 19 2021