cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A147542 Product(1 + a(n)*x^n, n=1..infinity) = sum(F(k+1)*x^k, k=1..infinity) = 1/(1-x-x^2), where F(n) = A000045(n) (Fibonacci numbers).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 4, 18, 8, 8, 18, 17, 40, 50, 88, 396, 210, 296, 492, 690, 1144, 1776, 2786, 3545, 6704, 10610, 16096, 25524, 39650, 63544, 97108, 269154, 236880, 389400, 589298, 956000, 1459960, 2393538, 3604880, 5739132, 9030450, 14777200
Offset: 1

Views

Author

Neil Fernandez, Nov 06 2008

Keywords

Comments

A formal infinite product representation for the Fibonacci numbers (A000045(n+1)).
For references see A147541. [R. J. Mathar, Mar 12 2009]

Crossrefs

Programs

  • Mathematica
    m = 200;
    sol = Thread[CoefficientList[Sum[Log[1 + a[n] x^n], {n, 1, m}] - Log[1/(1 - x - x^2)] + O[x]^(m + 1), x] == 0] // Solve // First;
    Array[a, m] /. sol (* Jean-François Alcover, Oct 22 2019 *)

Formula

From Wolfdieter Lang, Mar 06 2009: (Start)
Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions (fp)):
a(n)= F(n+1) - sum(sum(product(a(k[j]),j=1..m),fp from FP(n,m)),m=2..maxm(n)), with maxm(n):=A003056(n) and the distinct parts k[j], j=1,...,m, of the partition fp of n, n>=3. Inputs a(1)=F(2)=1, a(2)=F(3)=2. See the array A008289(n,m) for the cardinality of the set FP(n,m).
Recurrence II: With the definition of FP(n,m) from the above recurrence I, P(n,m) the general set of partitions of n with m parts, and the multinomial numbers M_0 (given for every partition under A048996):
a(n) = sum((d/n)*(-a(d)^(n/d)),d|n with 1=2; a(1)=F(2)=1. The exponents e(j)>=0 satisfy sum(j*e(j),j=1..n)=n and sum(e(j),j=1..m). The M_0 numbers are m!/product(e(j)!,j=1..n).
Example of recurrence I: a(4) = F(5) - a(1)*a(3) = 5 - 1*1 = 4.
Example of recurrence II: a(4)= 2*(-1)^2 + (1*F(5)-(1/2)*(2*F(2)*F(4) + 1*F(3)^2) + (1/3)*3*F(2)^2*F(3)) = 4. (End)

Extensions

More terms and revised description from Wolfdieter Lang Mar 06 2009
Edited by N. J. A. Sloane, Mar 11 2009 at the suggestion of Vladeta Jovovic
More terms from R. J. Mathar, Mar 12 2009

A348205 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + log(1 + x).

Original entry on oeis.org

1, -3, 5, -68, 204, -1394, 16862, -413776, 2377512, -35594832, 558727872, -8067263280, 185546362416, -4108304962176, 82441247589360, -3519099528152064, 50908186083448320, -1465023121035418368, 38998680958184088960, -1219845314470474404864, 36452994894649858339584
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 06 2021

Keywords

Crossrefs

Formula

Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 - Sum_{n>=1} (-x)^n/n.

A348206 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + log(1 + x).

Original entry on oeis.org

1, -1, 5, -26, 204, -1434, 16862, -166536, 2377512, -29870400, 558727872, -8542202976, 185546362416, -3332732184768, 82441247589360, -1824937537167744, 50908186083448320, -1214743725939310848, 38998680958184088960, -1084067907183602910720, 36452994894649858339584
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 06 2021

Keywords

Crossrefs

Formula

Product_{n>=1} (1 + a(n)*x^n/n!) = 1 - Sum_{n>=1} (-x)^n/n.

A352691 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + log(1 + x).

Original entry on oeis.org

1, -3, 5, -23, 204, -1894, 16862, -166466, 2346712, -37858296, 558727872, -9031080288, 185546362416, -3960341036352, 83728926109488, -1961110591316304, 50908186083448320, -1384998141007364736, 38998680958184088960, -1160052698286814237056, 37029733866954589964544
Offset: 1

Views

Author

Ilya Gutkovskiy, May 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Log[1 + x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 - Sum_{n>=1} (-x)^n/n.
E.g.f.: Sum_{k>=1} mu(k) * log(1 + log(1 + x^k)) / k.

A352404 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + log(1 + x).

Original entry on oeis.org

1, -1, 5, -35, 204, -1294, 16862, -225266, 2346712, -31689336, 558727872, -9891952608, 185546362416, -3668674300992, 83728926109488, -2078005263610704, 50908186083448320, -1343594571773137536, 38998680958184088960, -1181298578244977897856, 37029733866954589964544
Offset: 1

Views

Author

Ilya Gutkovskiy, May 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = (-1)^(n + 1)/n - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 21}]

Formula

Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 - Sum_{n>=1} (-x)^n/n.

A352664 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 - log(1 - x).

Original entry on oeis.org

1, 1, -1, 13, -16, -34, -526, 22142, -10424, -160536, -2805408, -29182944, -374664720, -3220913760, 32949033168, 11465880121776, -16610113920768, -96543735968640, -5110200130727808, -130871898552663936, 1042965176555775744, -29461082210774712576
Offset: 1

Views

Author

Ilya Gutkovskiy, May 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = 1/n - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 22}]

Formula

Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + Sum_{n>=1} x^n/n.

A352953 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 - log(1 - x).

Original entry on oeis.org

1, -1, -1, 1, -16, 86, -526, 302, -10424, 323304, -2805408, -6563424, -374664720, 5877455520, 32949033168, -24011091024, -16610113920768, 87369247685760, -5110200130727808, -23241729685643136, 1042965176555775744, 49535245994720788224
Offset: 1

Views

Author

Ilya Gutkovskiy, May 15 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 - Log[1 - x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + Sum_{n>=1} x^n/n.
E.g.f.: Sum_{k>=1} mu(k) * log(1 - log(1 - x^k)) / k.

A348207 Product_{n>=1} (1 + a(n)*x^n/(n!)^2) = BesselI(0,2*sqrt(x)).

Original entry on oeis.org

1, 1, -8, 129, -2424, 87040, -3354000, 234927105, -13619579120, 1467819193176, -142339701178080, 21415200007555200, -2958022926285910560, 605932431017659471440, -110644439905256239190208, 32132110188849291391675905, -7427852296898683736690604000
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 06 2021

Keywords

Crossrefs

Formula

Product_{n>=1} (1 + a(n)*x^n/(n!)^2) = Sum_{n>=0} x^n/(n!)^2.
Showing 1-8 of 8 results.