A157273
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 47, 47, 1, 1, 154, 590, 154, 1, 1, 477, 4498, 4498, 477, 1, 1, 1448, 28323, 71232, 28323, 1448, 1, 1, 4363, 162313, 816503, 816503, 162313, 4363, 1, 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1, 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 47, 47, 1;
1, 154, 590, 154, 1;
1, 477, 4498, 4498, 477, 1;
1, 1448, 28323, 71232, 28323, 1448, 1;
1, 4363, 162313, 816503, 816503, 162313, 4363, 1;
1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1;
1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157268
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2^k if k <= floor(n/2) otherwise 2^(n-k), and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5856, 2413, 182, 1, 1, 373, 8679, 40337, 40337, 8679, 373, 1, 1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1, 1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 17, 17, 1;
1, 40, 126, 40, 1;
1, 87, 606, 606, 87, 1;
1, 182, 2413, 5856, 2413, 182, 1;
1, 373, 8679, 40337, 40337, 8679, 373, 1;
1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1;
1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1;
Cf.
A007318 (m=0), this sequence (m=1).
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157272,
A157273,
A157274,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2^k, 2^(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
-
def f(n,k): return 2^k if (k <= n//2) else 2^(n-k)
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022
A157272
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 20, 20, 1, 1, 47, 155, 47, 1, 1, 102, 753, 753, 102, 1, 1, 213, 3004, 7109, 3004, 213, 1, 1, 436, 10800, 48727, 48727, 10800, 436, 1, 1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1, 1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 20, 20, 1;
1, 47, 155, 47, 1;
1, 102, 753, 753, 102, 1;
1, 213, 3004, 7109, 3004, 213, 1;
1, 436, 10800, 48727, 48727, 10800, 436, 1;
1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1;
1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022
A157274
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 84, 84, 1, 1, 355, 1431, 355, 1, 1, 1442, 14827, 14827, 1442, 1, 1, 5793, 127860, 326591, 127860, 5793, 1, 1, 23200, 1009338, 5239457, 5239457, 1009338, 23200, 1, 1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 84, 84, 1;
1, 355, 1431, 355, 1;
1, 1442, 14827, 14827, 1442, 1;
1, 5793, 127860, 326591, 127860, 5793, 1;
1, 23200, 1009338, 5239457, 5239457, 1009338, 23200, 1;
1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157275
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5604, 2413, 182, 1, 1, 373, 8679, 38117, 38117, 8679, 373, 1, 1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1, 1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 17, 17, 1;
1, 40, 126, 40, 1;
1, 87, 606, 606, 87, 1;
1, 182, 2413, 5604, 2413, 182, 1;
1, 373, 8679, 38117, 38117, 8679, 373, 1;
1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1;
1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
@CachedFunction
def T(n,k,m): # A157275
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157277
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 39, 39, 1, 1, 128, 470, 128, 1, 1, 397, 3558, 3558, 397, 1, 1, 1206, 22387, 55452, 22387, 1206, 1, 1, 3635, 128377, 632343, 632343, 128377, 3635, 1, 1, 10924, 698788, 6107192, 12269406, 6107192, 698788, 10924, 1, 1, 32793, 3686880, 53375112, 187721254, 187721254, 53375112, 3686880, 32793, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 39, 39, 1;
1, 128, 470, 128, 1;
1, 397, 3558, 3558, 397, 1;
1, 1206, 22387, 55452, 22387, 1206, 1;
1, 3635, 128377, 632343, 632343, 128377, 3635, 1;
1, 10924, 698788, 6107192, 12269406, 6107192, 698788, 10924, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
@CachedFunction
def T(n,k,m): # A157277
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157633
Triangle T(n,m) read rows: 1 in column m=0 and on the diagonal, 2*m*(n-m)*(m^2-n*m+2*n^2) otherwise.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 64, 64, 1, 1, 174, 224, 174, 1, 1, 368, 528, 528, 368, 1, 1, 670, 1024, 1134, 1024, 670, 1, 1, 1104, 1760, 2064, 2064, 1760, 1104, 1, 1, 1694, 2784, 3390, 3584, 3390, 2784, 1694, 1, 1, 2464, 4144, 5184, 5680, 5680, 5184, 4144, 2464, 1, 1
Offset: 0
{1},
{1, 1},
{1, 14, 1},
{1, 64, 64, 1},
{1, 174, 224, 174, 1},
{1, 368, 528, 528, 368, 1},
{1, 670, 1024, 1134, 1024, 670, 1},
{1, 1104, 1760, 2064, 2064, 1760, 1104, 1},
{1, 1694, 2784, 3390, 3584, 3390, 2784, 1694, 1},
{1, 2464, 4144, 5184, 5680, 5680, 5184, 4144, 2464, 1},
{1, 3438, 5888, 7518, 8448, 8750, 8448, 7518, 5888, 3438, 1}
-
t[n_, m_] = If[n*m*(n - m) == 0, 1, n^4 - (m^4 + (n - m)^4)];
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
Edited by the Associate Editors of the OEIS, Apr 22 2009
Showing 1-7 of 7 results.
Comments