A157273
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 47, 47, 1, 1, 154, 590, 154, 1, 1, 477, 4498, 4498, 477, 1, 1, 1448, 28323, 71232, 28323, 1448, 1, 1, 4363, 162313, 816503, 816503, 162313, 4363, 1, 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1, 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 47, 47, 1;
1, 154, 590, 154, 1;
1, 477, 4498, 4498, 477, 1;
1, 1448, 28323, 71232, 28323, 1448, 1;
1, 4363, 162313, 816503, 816503, 162313, 4363, 1;
1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1;
1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157268
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2^k if k <= floor(n/2) otherwise 2^(n-k), and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5856, 2413, 182, 1, 1, 373, 8679, 40337, 40337, 8679, 373, 1, 1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1, 1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 17, 17, 1;
1, 40, 126, 40, 1;
1, 87, 606, 606, 87, 1;
1, 182, 2413, 5856, 2413, 182, 1;
1, 373, 8679, 40337, 40337, 8679, 373, 1;
1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1;
1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1;
Cf.
A007318 (m=0), this sequence (m=1).
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157272,
A157273,
A157274,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2^k, 2^(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
-
def f(n,k): return 2^k if (k <= n//2) else 2^(n-k)
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022
A157272
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 20, 20, 1, 1, 47, 155, 47, 1, 1, 102, 753, 753, 102, 1, 1, 213, 3004, 7109, 3004, 213, 1, 1, 436, 10800, 48727, 48727, 10800, 436, 1, 1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1, 1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 20, 20, 1;
1, 47, 155, 47, 1;
1, 102, 753, 753, 102, 1;
1, 213, 3004, 7109, 3004, 213, 1;
1, 436, 10800, 48727, 48727, 10800, 436, 1;
1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1;
1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022
A157274
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 84, 84, 1, 1, 355, 1431, 355, 1, 1, 1442, 14827, 14827, 1442, 1, 1, 5793, 127860, 326591, 127860, 5793, 1, 1, 23200, 1009338, 5239457, 5239457, 1009338, 23200, 1, 1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 84, 84, 1;
1, 355, 1431, 355, 1;
1, 1442, 14827, 14827, 1442, 1;
1, 5793, 127860, 326591, 127860, 5793, 1;
1, 23200, 1009338, 5239457, 5239457, 1009338, 23200, 1;
1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157275
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5604, 2413, 182, 1, 1, 373, 8679, 38117, 38117, 8679, 373, 1, 1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1, 1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 17, 17, 1;
1, 40, 126, 40, 1;
1, 87, 606, 606, 87, 1;
1, 182, 2413, 5604, 2413, 182, 1;
1, 373, 8679, 38117, 38117, 8679, 373, 1;
1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1;
1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
@CachedFunction
def T(n,k,m): # A157275
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157278
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 69, 69, 1, 1, 292, 1134, 292, 1, 1, 1187, 11686, 11686, 1187, 1, 1, 4770, 100737, 254132, 100737, 4770, 1, 1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1, 1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 69, 69, 1;
1, 292, 1134, 292, 1;
1, 1187, 11686, 11686, 1187, 1;
1, 4770, 100737, 254132, 100737, 4770, 1;
1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1;
1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 06 2022 *)
-
def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
@CachedFunction
def T(n,k,m): # A157278
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 06 2022
A157629
A general recursion triangle with third part a power triangle:m=2; Power triangle: f(n,k,m)=If[n*k*(n - k) == 0, 1, n^m - (k^m + (n - k)^m)]; Recursion: A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) + (m*k + 1)*A(n - 1, k, m) + m*f(n, k, m)*A(n - 2, k - 1, m).
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 43, 43, 1, 1, 148, 590, 148, 1, 1, 469, 5018, 5018, 469, 1, 1, 1438, 34047, 91492, 34047, 1438, 1, 1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1, 1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1, 1, 39337
Offset: 0
{1},
{1, 1},
{1, 10, 1},
{1, 43, 43, 1},
{1, 148, 590, 148, 1},
{1, 469, 5018, 5018, 469, 1},
{1, 1438, 34047, 91492, 34047, 1438, 1},
{1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1},
{1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1},
{1, 39337, 6188356, 117961172, 478838974, 478838974, 117961172, 6188356, 39337, 1},
{1, 118066, 32448653, 1015124312, 7053594482, 13257922028, 7053594482, 1015124312, 32448653, 118066, 1}
-
A[n_, 0, m_] := 1; A[n_, n_, m_] := 1;
A[n_, k_, m_] := (m*(n - k) + 1)*A[n - 1, k - 1, m] + (m*k + 1)*A[n - 1, k, m] + m*f[n, k, m]*A[n - 2, k - 1, m];
Table[A[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[A[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[A[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
Showing 1-7 of 7 results.
Comments