cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A157273 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 47, 47, 1, 1, 154, 590, 154, 1, 1, 477, 4498, 4498, 477, 1, 1, 1448, 28323, 71232, 28323, 1448, 1, 1, 4363, 162313, 816503, 816503, 162313, 4363, 1, 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1, 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,    12,       1;
  1,    47,      47,        1;
  1,   154,     590,      154,         1;
  1,   477,    4498,     4498,       477,         1;
  1,  1448,   28323,    71232,     28323,      1448,        1;
  1,  4363,  162313,   816503,    816503,    162313,     4363,       1;
  1, 13110,  882764,  7897486,  15979230,   7897486,   882764,   13110,     1;
  1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
  • Sage
    def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
    @CachedFunction
    def T(n,k,m):  # A157207
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2.
T(n, n-k, m) = T(n, k, m).

Extensions

Edited by G. C. Greubel, Feb 05 2022

A157268 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2^k if k <= floor(n/2) otherwise 2^(n-k), and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5856, 2413, 182, 1, 1, 373, 8679, 40337, 40337, 8679, 373, 1, 1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1, 1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    6,     1;
  1,   17,    17,       1;
  1,   40,   126,      40,       1;
  1,   87,   606,     606,      87,       1;
  1,  182,  2413,    5856,    2413,     182,       1;
  1,  373,  8679,   40337,   40337,    8679,     373,     1;
  1,  756, 29376,  232726,  497066,  232726,   29376,   756,    1;
  1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], 2^k, 2^(n-k)];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
  • Sage
    def f(n,k): return 2^k if (k <= n//2) else 2^(n-k)
    @CachedFunction
    def T(n,k,m):  # A157207
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2^k if k <= floor(n/2) otherwise 2^(n-k), and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A101945(n-1), n >= 1. - G. C. Greubel, Feb 04 2022

Extensions

Edited by G. C. Greubel, Feb 04 2022

A157272 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 20, 20, 1, 1, 47, 155, 47, 1, 1, 102, 753, 753, 102, 1, 1, 213, 3004, 7109, 3004, 213, 1, 1, 436, 10800, 48727, 48727, 10800, 436, 1, 1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1, 1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    7,      1;
  1,   20,     20,       1;
  1,   47,    155,      47,       1;
  1,  102,    753,     753,     102,       1;
  1,  213,   3004,    7109,    3004,     213,       1;
  1,  436,  10800,   48727,   48727,   10800,     436,      1;
  1,  883,  36517,  280736,  551251,  280736,   36517,    883,    1;
  1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
  • Sage
    def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
    @CachedFunction
    def T(n,k,m):  # A157207
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 1.
T(n, n-k, m) = T(n, k, m).

Extensions

Edited by G. C. Greubel, Feb 04 2022

A157274 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 17, 1, 1, 84, 84, 1, 1, 355, 1431, 355, 1, 1, 1442, 14827, 14827, 1442, 1, 1, 5793, 127860, 326591, 127860, 5793, 1, 1, 23200, 1009338, 5239457, 5239457, 1009338, 23200, 1, 1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,    17,       1;
  1,    84,      84,        1;
  1,   355,    1431,      355,         1;
  1,  1442,   14827,    14827,      1442,        1;
  1,  5793,  127860,   326591,    127860,     5793,       1;
  1, 23200, 1009338,  5239457,   5239457,  1009338,   23200,     1;
  1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
  • Sage
    def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
    @CachedFunction
    def T(n,k,m):  # A157207
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 3.
T(n, n-k, m) = T(n, k, m).

Extensions

Edited by G. C. Greubel, Feb 05 2022

A157275 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5604, 2413, 182, 1, 1, 373, 8679, 38117, 38117, 8679, 373, 1, 1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1, 1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    6,     1;
  1,   17,    17,       1;
  1,   40,   126,      40,       1;
  1,   87,   606,     606,      87,       1;
  1,  182,  2413,    5604,    2413,     182,       1;
  1,  373,  8679,   38117,   38117,    8679,     373,     1;
  1,  756, 29376,  219020,  426002,  219020,   29376,   756,    1;
  1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
  • Sage
    def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
    @CachedFunction
    def T(n,k,m):  # A157275
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A101945(n-1), for n >= 1. - G. C. Greubel, Feb 05 2022

Extensions

Edited by G. C. Greubel, Feb 05 2022

A157278 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 69, 69, 1, 1, 292, 1134, 292, 1, 1, 1187, 11686, 11686, 1187, 1, 1, 4770, 100737, 254132, 100737, 4770, 1, 1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1, 1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,    14,       1;
  1,    69,      69,        1;
  1,   292,    1134,      292,         1;
  1,  1187,   11686,    11686,      1187,        1;
  1,  4770,  100737,   254132,    100737,     4770,       1;
  1, 19105,  795723,  4061249,   4061249,   795723,   19105,     1;
  1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 06 2022 *)
  • Sage
    def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
    @CachedFunction
    def T(n,k,m):  # A157278
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 06 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3.
T(n, n-k, m) = T(n, k, m).

Extensions

Edited by G. C. Greubel, Feb 06 2022

A157629 A general recursion triangle with third part a power triangle:m=2; Power triangle: f(n,k,m)=If[n*k*(n - k) == 0, 1, n^m - (k^m + (n - k)^m)]; Recursion: A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) + (m*k + 1)*A(n - 1, k, m) + m*f(n, k, m)*A(n - 2, k - 1, m).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 43, 43, 1, 1, 148, 590, 148, 1, 1, 469, 5018, 5018, 469, 1, 1, 1438, 34047, 91492, 34047, 1438, 1, 1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1, 1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1, 1, 39337
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Comments

Row sums are:
{1, 2, 12, 88, 888, 10976, 162464, 2793792, 54779904, 1206055680, 29460493056,...}.

Examples

			{1},
{1, 1},
{1, 10, 1},
{1, 43, 43, 1},
{1, 148, 590, 148, 1},
{1, 469, 5018, 5018, 469, 1},
{1, 1438, 34047, 91492, 34047, 1438, 1},
{1, 4351, 204813, 1187731, 1187731, 204813, 4351, 1},
{1, 13096, 1149652, 12609880, 27234646, 12609880, 1149652, 13096, 1},
{1, 39337, 6188356, 117961172, 478838974, 478838974, 117961172, 6188356, 39337, 1},
{1, 118066, 32448653, 1015124312, 7053594482, 13257922028, 7053594482, 1015124312, 32448653, 118066, 1}
		

Crossrefs

Programs

  • Mathematica
    A[n_, 0, m_] := 1; A[n_, n_, m_] := 1;
    A[n_, k_, m_] := (m*(n - k) + 1)*A[n - 1, k - 1, m] + (m*k + 1)*A[n - 1, k, m] + m*f[n, k, m]*A[n - 2, k - 1, m];
    Table[A[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
    Table[Flatten[Table[Table[A[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
    Table[Table[Sum[A[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];

Formula

m=0:Pascal:m=1Eulerian numbers;
m=2;
Power triangle:
f(n,k,m)=If[n*k*(n - k) == 0, 1, n^m - (k^m + (n - k)^m)];
Recursion:
A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) +
(m*k + 1)*A(n - 1, k, m) +
m*f(n, k, m)*A(n - 2, k - 1, m).
Showing 1-7 of 7 results.