A157336 a(n) = 8*(8*n + 1).
72, 136, 200, 264, 328, 392, 456, 520, 584, 648, 712, 776, 840, 904, 968, 1032, 1096, 1160, 1224, 1288, 1352, 1416, 1480, 1544, 1608, 1672, 1736, 1800, 1864, 1928, 1992, 2056, 2120, 2184, 2248, 2312, 2376, 2440, 2504, 2568, 2632, 2696, 2760, 2824, 2888, 2952
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
I:=[72, 136]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
-
Mathematica
Range[72, 5000, 64] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *) LinearRecurrence[{2, -1}, {72, 136}, 50] (* Vincenzo Librandi, Jan 29 2012 *)
-
PARI
for(n=1, 40, print1(64*n + 8", ")); \\ Vincenzo Librandi, Jan 29 2012
Formula
From Vincenzo Librandi, Jan 29 2012: (Start)
G.f.: 8*(1+7*x)/(x-1)^2. [corrected by Georg Fischer, May 12 2019]
a(n) = 2*a(n-1)-a(n-2). (End)
E.g.f.: 8*(1+8*x)*exp(x). - G. C. Greubel, Feb 01 2018
Comments