cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157336 a(n) = 8*(8*n + 1).

Original entry on oeis.org

72, 136, 200, 264, 328, 392, 456, 520, 584, 648, 712, 776, 840, 904, 968, 1032, 1096, 1160, 1224, 1288, 1352, 1416, 1480, 1544, 1608, 1672, 1736, 1800, 1864, 1928, 1992, 2056, 2120, 2184, 2248, 2312, 2376, 2440, 2504, 2568, 2632, 2696, 2760, 2824, 2888, 2952
Offset: 1

Views

Author

Vincenzo Librandi, Feb 27 2009

Keywords

Comments

The identity (128*n^2+32*n+1)^2-(4*n^2+n)*(64*n+8)^2=1 can be written as A157337(n)^2-A007742(n)*a(n)^2=1. This is the case s=2 of the identity (8*n^2*s^4+8*n*s^2+1)^2-(n^2*s^2+n)*(8*n*s^3+4*s)^2=1. - Vincenzo Librandi, Jan 29 2012
Likewise, the immediate identity (a(n)^2+1)^2-(a(n)^2+2)*a(n)^2 = 1 can be rewritten as A158686(8*n+1)^2-(A158686(8*n+1)+1)*a(n)^2=1. - Bruno Berselli, Feb 13 2012

Crossrefs

Programs

Formula

From Vincenzo Librandi, Jan 29 2012: (Start)
G.f.: 8*(1+7*x)/(x-1)^2. [corrected by Georg Fischer, May 12 2019]
a(n) = 2*a(n-1)-a(n-2). (End)
E.g.f.: 8*(1+8*x)*exp(x). - G. C. Greubel, Feb 01 2018