A157523 Triangle T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1, read by rows.
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 95, 37, 1, 1, 82, 463, 463, 82, 1, 1, 173, 1910, 3799, 1910, 173, 1, 1, 356, 7096, 25672, 25672, 7096, 356, 1, 1, 723, 24645, 150994, 260519, 150994, 24645, 723, 1, 1, 1458, 81499, 804875, 2259903, 2259903, 804875, 81499, 1458, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 5, 1; 1, 15, 15, 1; 1, 37, 95, 37, 1; 1, 82, 463, 463, 82, 1; 1, 173, 1910, 3799, 1910, 173, 1; 1, 356, 7096, 25672, 25672, 7096, 356, 1; 1, 723, 24645, 150994, 260519, 150994, 24645, 723, 1; 1, 1458, 81499, 804875, 2259903, 2259903, 804875, 81499, 1458, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
f[n_, k_]= 1 + If[k<=Floor[n/4], k, If[Floor[n/4]
A157522[n_, k_]:= f[n,k] +f[n,n-k] -1; T[n_, k_, q_]:= T[n,k,q]= If[k==0 || k==n, 1, (q*(n-k) +1)*T[n-1,k-1,q] + (q*k+1)*T[n-1, k, q] + q*A157522[n, k]*T[n-2,k-1,q]]; Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 23 2022 *) -
Sage
def f(n, k): if (k <= (n//4)): return k+1 elif ((n//4) < k <= (n//2)): return (n//2)-k+1 elif ((n//2) < k <= (3*n//4)): return k+1-(n//2) else: return n-k+1 def A157522(n,k): return f(n,k) + f(n,n-k) - 1 @CachedFunction def T(n, k, q): if (k==0 or k==n): return 1 else: return (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q); flatten([[T(n,k,1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 23 2022
Formula
T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1.
Extensions
Edited by G. C. Greubel, Jan 23 2022