cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157523 Triangle T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 95, 37, 1, 1, 82, 463, 463, 82, 1, 1, 173, 1910, 3799, 1910, 173, 1, 1, 356, 7096, 25672, 25672, 7096, 356, 1, 1, 723, 24645, 150994, 260519, 150994, 24645, 723, 1, 1, 1458, 81499, 804875, 2259903, 2259903, 804875, 81499, 1458, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 02 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    5,     1;
  1,   15,    15,      1;
  1,   37,    95,     37,       1;
  1,   82,   463,    463,      82,       1;
  1,  173,  1910,   3799,    1910,     173,      1;
  1,  356,  7096,  25672,   25672,    7096,    356,     1;
  1,  723, 24645, 150994,  260519,  150994,  24645,   723,    1;
  1, 1458, 81499, 804875, 2259903, 2259903, 804875, 81499, 1458, 1;
		

Crossrefs

Cf. A007318 (q=0), this sequence (q=1).
Cf. A157522.

Programs

  • Mathematica
    f[n_, k_]= 1 + If[k<=Floor[n/4], k, If[Floor[n/4]A157522[n_, k_]:= f[n,k] +f[n,n-k] -1;
    T[n_, k_, q_]:= T[n,k,q]= If[k==0 || k==n, 1, (q*(n-k) +1)*T[n-1,k-1,q] + (q*k+1)*T[n-1, k, q] + q*A157522[n, k]*T[n-2,k-1,q]];
    Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 23 2022 *)
  • Sage
    def f(n, k):
        if (k <= (n//4)): return k+1
        elif ((n//4) < k <= (n//2)): return (n//2)-k+1
        elif ((n//2) < k <= (3*n//4)): return k+1-(n//2)
        else: return n-k+1
    def A157522(n,k): return f(n,k) + f(n,n-k) - 1
    @CachedFunction
    def T(n, k, q):
        if (k==0 or k==n): return 1
        else: return (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q);
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 23 2022

Formula

T(n, k, q) = (q*(n-k) +1)*T(n-1, k-1, q) + (q*k+1)*T(n-1, k, q) + q*A157522(n, k)*T(n-2, k-1, q), with T(n, 0, q) = T(n, n, q) = 1 and q = 1.

Extensions

Edited by G. C. Greubel, Jan 23 2022