A157612 Number of factorizations of n! into distinct factors.
1, 1, 1, 2, 5, 16, 57, 253, 1060, 5285, 28762, 191263, 1052276, 8028450, 56576192, 424900240, 2584010916, 24952953943, 178322999025, 1886474434192, 15307571683248, 143131274598786, 1423606577935925, 17668243239613767, 137205093278725072, 1399239022852163764, 15774656316828338767
Offset: 0
Keywords
Examples
3! = 6 = 2*3. a(3) = 2 because there are 2 factorizations of 3!. 4! = 24 = 2*12 = 3*8 = 4*6 = 2*3*4. a(4) = 5 because there are 5 factorizations of 4!. 5! = 120 (1) 5! = 2*60 = 3*40 = 4*30 = 5*24 = 6*20 = 8*15 = 10*12 (7) 5! = 2*3*20 = 2*4*15 = 2*5*12 = 2*6*10 = 3*4*10 = 3*5*8 = 4*5*6 (7) 5! = 2*3*4*5 (1) a(5) = 16 because there are 16 factorizations of 5!.
Programs
-
Maple
with(numtheory): b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0, add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n})) end: a:= n-> b(n!$2): seq(a(n), n=0..12); # Alois P. Heinz, May 26 2013
-
Mathematica
b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d-1]], {d, Divisors[n] ~Complement~ {1, n}}]]; a[n_] := b[n!, n!]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
-
PARI
\\ See A318286 for count. a(n)={if(n<=1, 1, count(factor(n!)[,2]))} \\ Andrew Howroyd, Feb 01 2020
Extensions
a(8)-a(12) from Ray Chandler, Mar 07 2009
a(13)-a(17) from Alois P. Heinz, May 26 2013
a(18)-a(19) from Alois P. Heinz, Jan 10 2015
a(20)-a(26) from Andrew Howroyd, Feb 01 2020
Comments