cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157612 Number of factorizations of n! into distinct factors.

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 57, 253, 1060, 5285, 28762, 191263, 1052276, 8028450, 56576192, 424900240, 2584010916, 24952953943, 178322999025, 1886474434192, 15307571683248, 143131274598786, 1423606577935925, 17668243239613767, 137205093278725072, 1399239022852163764, 15774656316828338767
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 03 2009

Keywords

Comments

The number of factorizations of (n+1)! into k distinct factors can be arranged into the following triangle:
2! 1;
3! 1, 1;
4! 1, 3, 1;
5! 1, 7, 7, 1;
...

Examples

			3! = 6 = 2*3.
a(3) = 2 because there are 2 factorizations of 3!.
4! = 24 = 2*12 = 3*8 = 4*6 = 2*3*4.
a(4) = 5 because there are 5 factorizations of 4!.
5! = 120 (1)
5! = 2*60 = 3*40 = 4*30 = 5*24 = 6*20 = 8*15 = 10*12 (7)
5! = 2*3*20 = 2*4*15 = 2*5*12 = 2*6*10 = 3*4*10 = 3*5*8 = 4*5*6 (7)
5! = 2*3*4*5 (1)
a(5) = 16 because there are 16 factorizations of 5!.
		

Crossrefs

Cf. A076716, A157017, A157229, A318286. See A157836 for continuation of triangle.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n!$2):
    seq(a(n), n=0..12);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d-1]], {d, Divisors[n] ~Complement~ {1, n}}]];
    a[n_] := b[n!, n!];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
  • PARI
    \\ See A318286 for count.
    a(n)={if(n<=1, 1, count(factor(n!)[,2]))} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = A045778(A000142(n)).

Extensions

a(8)-a(12) from Ray Chandler, Mar 07 2009
a(13)-a(17) from Alois P. Heinz, May 26 2013
a(18)-a(19) from Alois P. Heinz, Jan 10 2015
a(20)-a(26) from Andrew Howroyd, Feb 01 2020