A157646 Positive numbers y such that y^2 is of the form x^2 + (x+31)^2 with integer x.
25, 31, 41, 109, 155, 221, 629, 899, 1285, 3665, 5239, 7489, 21361, 30535, 43649, 124501, 177971, 254405, 725645, 1037291, 1482781, 4229369, 6045775, 8642281, 24650569, 35237359, 50370905, 143674045, 205378379, 293583149, 837393701
Offset: 1
Examples
(-7, a(1)) = (-7, 25) is a solution: (-7)^2+(-7+31)^2 = 49+576 = 625 = 25^2. (A118674(1), a(2)) = (0, 31) is a solution: 0^2+(0+31)^2 = 961 = 31^2. (A118674(3), a(4)) = (60, 109) is a solution: 60^2+(60+31)^2 = 3600+8281 = 11881 = 109^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[25,31,41,109,155,221]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{25,31,41,109,155,221},40] (* Harvey P. Dale, Oct 12 2017 *)
-
PARI
{forstep(n=-8, 840000000, [1, 3], if(issquare(2*n^2+62*n+961, &k), print1(k, ",")))};
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=25, a(2)=31, a(3)=41, a(4)=109, a(5)=155, a(6)=221.
G.f.: (1-x)*(25 + 56*x + 97*x^2 + 56*x^3 + 25*x^4)/(1 - 6*x^3 + x^6).
a(3*k-1) = 31*A001653(k) for k >= 1.
Comments