cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157646 Positive numbers y such that y^2 is of the form x^2 + (x+31)^2 with integer x.

Original entry on oeis.org

25, 31, 41, 109, 155, 221, 629, 899, 1285, 3665, 5239, 7489, 21361, 30535, 43649, 124501, 177971, 254405, 725645, 1037291, 1482781, 4229369, 6045775, 8642281, 24650569, 35237359, 50370905, 143674045, 205378379, 293583149, 837393701
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

(-7,a(1)) and (A118674(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+31)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (33+8*sqrt(2))/31 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-7, a(1)) = (-7, 25) is a solution: (-7)^2+(-7+31)^2 = 49+576 = 625 = 25^2.
(A118674(1), a(2)) = (0, 31) is a solution: 0^2+(0+31)^2 = 961 = 31^2.
(A118674(3), a(4)) = (60, 109) is a solution: 60^2+(60+31)^2 = 3600+8281 = 11881 = 109^2.
		

Crossrefs

Cf. A118674, A001653, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157647 (decimal expansion of (33+8*sqrt(2))/31), A157648 (decimal expansion of (1539+850*sqrt(2))/31^2).

Programs

  • Magma
    I:=[25,31,41,109,155,221]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{25,31,41,109,155,221},40] (* Harvey P. Dale, Oct 12 2017 *)
  • PARI
    {forstep(n=-8, 840000000, [1, 3], if(issquare(2*n^2+62*n+961, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=25, a(2)=31, a(3)=41, a(4)=109, a(5)=155, a(6)=221.
G.f.: (1-x)*(25 + 56*x + 97*x^2 + 56*x^3 + 25*x^4)/(1 - 6*x^3 + x^6).
a(3*k-1) = 31*A001653(k) for k >= 1.