A157663 a(n) = 8000*n + 40.
8040, 16040, 24040, 32040, 40040, 48040, 56040, 64040, 72040, 80040, 88040, 96040, 104040, 112040, 120040, 128040, 136040, 144040, 152040, 160040, 168040, 176040, 184040, 192040, 200040, 208040, 216040, 224040, 232040, 240040, 248040, 256040
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
GAP
List([1..40], n -> 40*(200*n + 1)); # G. C. Greubel, Nov 17 2018
-
Magma
I:=[8040, 16040]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
-
Mathematica
LinearRecurrence[{2, -1}, {8040, 16040}, 50] (* Vincenzo Librandi, Feb 04 2012 *) 8000*Range[40]+40 (* Harvey P. Dale, Dec 31 2024 *)
-
PARI
for(n=1, 50, print1(8000*n + 40", ")); \\ Vincenzo Librandi, Feb 04 2012
-
Sage
[40*(200*n + 1) for n in (1..40)] # G. C. Greubel, Nov 17 2018
Formula
G.f.: x*(8040 - 40*x)/(1-x)^2. - Vincenzo Librandi, Feb 04 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 04 2012
E.g.f.: 40*(-1 + (1 + 200*x)*exp(x)). - G. C. Greubel, Nov 17 2018
Comments