A157727 a(n) = Fibonacci(n) + 4.
4, 5, 5, 6, 7, 9, 12, 17, 25, 38, 59, 93, 148, 237, 381, 614, 991, 1601, 2588, 4185, 6769, 10950, 17715, 28661, 46372, 75029, 121397, 196422, 317815, 514233, 832044, 1346273, 2178313, 3524582, 5702891, 9227469, 14930356, 24157821, 39088173, 63245990, 102334159
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..285
- Ivana Jovović and Branko Malešević, Some enumerations of non-trivial composition of the differential operations and the directional derivative, Notes on Number Theory and Discrete Mathematics, Vol. 23, 2017, No. 1, 28-38.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Crossrefs
Programs
-
Haskell
a157727 = (+ 4) . a000045 a157727_list = 4 : 5 : map (subtract 4) (zipWith (+) a157727_list $ tail a157727_list) -- Reinhard Zumkeller, Jul 30 2013
-
Magma
[ Fibonacci(n) + 4: n in [0..40] ]; // Vincenzo Librandi, Apr 24 2011
-
Mathematica
Fibonacci[Range[0,50]]+4 (* Harvey P. Dale, Jun 17 2011 *)
-
PARI
a(n)=fibonacci(n)+4 \\ Charles R Greathouse IV, Jul 02 2013
Formula
a(0) = 4, a(1) = 5, a(n) = a(n - 2) + a(n - 1) - 4. - Reinhard Zumkeller, Jul 30 2013
G.f.: (4 - 3*x - 5*x^2)/((1 - x)*(1 - x - x^2)). - Stefano Spezia, Jul 21 2024