A157752 Smallest positive integer m such that m == prime(i) (mod prime(i+1)) for all 1<=i<=n.
2, 8, 68, 1118, 2273, 197468, 1728998, 1728998, 447914738, 10152454583, 1313795640428, 97783391392958, 5726413266646343, 38433316595821418, 15103232990013860963, 943894249589930135768, 52858423703753671390658, 932521283899305953765183, 8790842834979573009644273
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..349
Programs
-
Maple
A157752 := proc(n) local lrem,leval,i ; lrem := [] ; leval := [] ; for i from 1 to n do lrem := [op(lrem),ithprime(i+1)] ; leval := [op(leval),ithprime(i)] ; end do: chrem(leval,lrem) ; end proc: # R. J. Mathar, Apr 14 2016
-
Mathematica
a[n_] := ChineseRemainder[Prime[Range[n]], Prime[Range[2, n + 1]]] a[ # ] & /@ Range[30] Table[With[{pr=Prime[Range[n]]},ChineseRemainder[Most[pr],Rest[pr]]],{n,2,30}] (* Harvey P. Dale, Jun 11 2017 *)
-
PARI
x=Mod(1, 1); for(i=1, 20, x=chinese(x, Mod(prime(i), prime(i+1))); print1(component(x, 2), ", "))
-
Python
from sympy.ntheory.modular import crt from sympy import prime def A157752(n): return int(crt((s:=[prime(i+1) for i in range(1,n)])+[prime(n+1)],[2]+s)[0]) # Chai Wah Wu, May 02 2023
Extensions
Edited by Charles R Greathouse IV, Oct 28 2009
Comments