cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157809 Numerator of Bernoulli(n,3).

Original entry on oeis.org

1, 5, 37, 15, 1079, 85, 8317, 455, 30959, 2313, 338585, 11275, 67124549, 53261, 688219, 245775, 267391423, 1114129, 1882776439, 4980755, 3460132789, 22020117, 6367811021, 96469015, 549385297589, 419430425, 5243044651, 1811939355, 3245794417411, 7784628253
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2009

Keywords

Comments

From Paul Curtz, Feb 18 2015 (Start)
The fractions 1, 5/2, 37/6, 15, 1079/30, 85, 8317/42, 455, 30959/30 etc are the binomial transform of the sequence of fractions Bernoulli(n,2) = 1, 3/2, 13/6, 3, 119/30, 5, 253/42 specified in A164558.
Their table of repeated differences starts
1, 5/2, 37/6, 15, 1079/30, ...
3/2, 11/3, 53/6, 629/30, ...
13/6, 31/6, 182/15, ...
3, 209/30, ...
119/30, ...
etc.
The sums of the antidiagonals in this table of differences are n*2^(n-1)
1 = 1
3/2 + 5/2 = 4
13/6 + 11/3 + 37/6 = 12
3 + 31/6 + 53/6 + 15 = 32
etc, see A001787.
(End)

Crossrefs

For denominators see A027642.

Programs

  • Maple
    seq(numer(bernoulli(n,3)),n=0..50); # Robert Israel, Jul 03 2016
  • Mathematica
    Table[Numerator[BernoulliB[n, 3]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)