cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215149 a(n) = n * (1 + 2^(n-1)).

Original entry on oeis.org

0, 2, 6, 15, 36, 85, 198, 455, 1032, 2313, 5130, 11275, 24588, 53261, 114702, 245775, 524304, 1114129, 2359314, 4980755, 10485780, 22020117, 46137366, 96469015, 201326616, 419430425, 872415258, 1811939355, 3758096412, 7784628253, 16106127390, 33285996575, 68719476768, 141733920801, 292057776162
Offset: 0

Views

Author

Paul Curtz, Aug 04 2012

Keywords

Comments

Related to Bernoulli numbers.
Essentially the same as A135854.

Crossrefs

Programs

  • Magma
    [n*(1 + 2^(n-1)): n in [0..40]]; // G. C. Greubel, Apr 19 2018
    
  • Mathematica
    Table[n(1+2^(n-1)),{n,0,40}] (* or *) LinearRecurrence[{6,-13,12,-4},{0,2,6,15}, 40] (* Harvey P. Dale, Oct 18 2013 *)
  • PARI
    a(n) = n*(1+2^(n-1)) \\ Michel Marcus, Mar 10 2013
    
  • Python
    def A215149(n): return n*(pow(2,n)+2)//2
    print([A215149(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025

Formula

a(n) = (A157809(n) - A164555(n)) / A027642(n).
a(n) = n (the nonnegative integers A001477(n)) + n*2^(n-1) (their binomial transform A001787(n)).
a(n+1) - a(n) = 2,4,9,21,... = A001792(n) + 1.
a(n+1) - 2*a(n) = 2 before A132045(n+1).
a(n) is the binomial transform of b(n) = 0,2,2,3,4,5,... = A001477(n) with 2 instead of 1. b(n) = (A164558(n) - A027641(n))/A027642(n)?
G.f.: x*(2-6*x+5*x^2) / ( (1-x)^2*(1-2*x)^2 ). - R. J. Mathar, Aug 06 2012
E.g.f.: x*exp(x)*(1 + exp(x)). - G. C. Greubel, Jan 18 2025
a(n) = n * A094373(n). - Alois P. Heinz, Jan 18 2025

A256595 Triangle A074909(n) with 0's as second column.

Original entry on oeis.org

1, 1, 0, 1, 0, 3, 1, 0, 6, 4, 1, 0, 10, 10, 5, 1, 0, 15, 20, 15, 6, 1, 0, 21, 35, 35, 21, 7, 1, 0, 28, 56, 70, 56, 28, 8, 1, 0, 36, 84, 126, 126, 84, 36, 9, 1, 0, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0

Views

Author

Paul Curtz, Apr 03 2015

Keywords

Comments

For Bernoulli numbers, B(1) excluded.
B(n) is calculated via
B(0) = 1;
B(0) + 0 = 1;
B(0) + 0 + 3*B(2) = 3/2;
B(0) + 0 + 6*B(2) + 4*B(3) = 2;
etc.
The diagonal is A026741(n+1)/A040001(n).
Row sums: 1, 1, 4, 11, 26, 57, ..., essentially Euler numbers A000295. See A130103, A008292 and A173018.
There is an infinitude of Bernoulli number sequences. They are of the form
B(n,q) = 1, q, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, ... .
Chronologically, the first, and the most regular, is, for q=1/2, A164555(n)/A027642(n), from Jacob Bernoulli (1654-1705), published in Ars Conjectandi in 1713 and(?) Seko Kowa (1642-1708) in 1712. See A159688. The second is, for q=-1/2, B(n,-1/2) = A027641(n)/A027642(n), from B(n,1/2) via Pascal's triangle. We could choose Be(n,q) instead of B(n,q) to avoid confusion with Sloane's B(n,p) for A027641(n)/A027642(n) (p=-1), A164555(n)/A027642(n) (p=1), A164558(n)/A027642(n) (p=2), A157809(n)/A027642(n) (p=3), ..., successive binomial transforms of the previous sequence.
This motivates the proposal of the (independent of q) sequence Bernoulli(n+2):
B(n+2) = 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ... and its inverse binomial transform. See A190339.

Examples

			1,
1, 0,
1, 0,  3,
1, 0,  6, 4,
1, 0, 10, 10,  5,
1, 0, 15, 20, 15, 6,
1, 0, 21, 35, 35, 21, 7,
etc.
		

References

  • Jacob Bernoulli, Ars Conjectandi (1713).

Crossrefs

Programs

A254630 Ascending antidiagonal numerators of the table of repeated differences of A164558(n)/A027642(n).

Original entry on oeis.org

1, 1, 3, 1, 2, 13, 0, 1, 5, 3, -1, -1, 2, 29, 119, 0, -1, -1, 1, 31, 5, 1, 1, -1, -8, -1, 43, 253, 0, 1, 1, 4, -4, -1, 41, 7, -1, -1, -1, 4, 8, 4, -1, 29, 239, 0, -1, -1, -8, -4, 4, 8, 1, 31, 9, 5, 5, 7, -4, -116, -32, -116, -4, 7, 71, 665, 0
Offset: 0

Views

Author

Paul Curtz, Feb 03 2015

Keywords

Comments

The difference table of Bernoulli(n,2) or B(n,2) = A164558(n)/A027642(n) is defined by placing the fractions in the upper row and calculating further rows as the differences of their preceding row:
1, 3/2, 13/6, 3, 119/30, ...
1/2, 2/3, 5/6, 29/30, ...
1/6, 1/6, 2/15, ...
0, -1/30, ...
-1/30, ...
etc.
The first column is A164555(n)/A027642(n).
In particular, the sums of the antidiagonals
1 = 1
1/2 + 3/2 = 2
1/6 + 2/3 + 13/6 = 3
0 + 1/6 + 5/6 + 3 = 4
etc. are the positive natural numbers. (This is rewritten for Bernoulli(n,3) in A157809).
We also have for Bernoulli(.,2)
B(0,2) = 1
B(0,2) + 2*B(1,2) = 4
B(0,2) + 3*B(1,2) + 3*B(2,2) = 12
B(0,2) + 4*B(1,2) + 6*B(2,2) + 4*B(3,2) = 32
etc. with right hand sides provided by A001787.
More generally sum_{s=0..t-1} binomial(t,s)*Bernoulli(s,q) gives A027471(t) for q=3, A002697 for q=4 etc, by reading A104002 downwards the q-th column.

Crossrefs

Cf. A027641, A027642, A074909, A085737, A085738, A104002, A157809, A157920, A157930, A157945, A157946, A157965, A164555, A164558, A190339, A158302, A181131 (numerators and denominators of the main diagonal).

Programs

  • Mathematica
    nmax = 11; A164558 = Table[BernoulliB[n,2], {n, 0, nmax}]; D164558 = Table[ Differences[A164558, n], {n, 0, nmax}]; Table[ D164558[[n-k+1, k+1]] // Numerator, {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2015 *)
Showing 1-3 of 3 results.