cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157877 Expansion of (1-x)*x/(x^2-30*x+1).

Original entry on oeis.org

1, 29, 869, 26041, 780361, 23384789, 700763309, 20999514481, 629284671121, 18857540619149, 565096933903349, 16934050476481321, 507456417360536281, 15206758470339607109, 455695297692827676989, 13655652172314490702561, 409213869871741893399841
Offset: 1

Views

Author

Paul Weisenhorn, Mar 08 2009

Keywords

Comments

This sequence is part of a solution of a more general problem involving 2 equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157877 is the a(n) sequence for A=7.
Positive values of x (or y) satisfying x^2 - 30xy + y^2 + 28 = 0. - Colin Barker, Feb 23 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,29,869]; [n le 3 select I[n] else 30*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 25 2014
  • Mathematica
    LinearRecurrence[{30,-1},{1,29},30] (* Harvey P. Dale, Dec 14 2011 *)
    CoefficientList[Series[(1 - x)/(x^2 - 30 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
  • PARI
    Vec((1-x)*x/(x^2-30*x+1)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
    

Formula

G.f.: (1-x)*x/(x^2-30*x+1).
a(1)=1, a(2)=29; for n>2, a(n) = 30*a(n-1)-a(n-2).
7*A157879(n)+1 = a(n)^2.
8*A157879(n)+1 = A157878(n)^2.
a(n) = (1/8)*(4-sqrt(14))*(1+(15+4*sqrt(14))^(2*n-1))/(15+4*sqrt(14))^(n-1). - Bruno Berselli, Feb 25 2014
From Andrea Pinos, Oct 05 2022: (Start)
a(n) = ceiling((C^n)/(C+1)), where C = 15 + 4*sqrt(14) = sqrt(225) + sqrt(224).
Limit_{n->oo} a(n+1)/a(n) = C. (End)

Extensions

Edited by Alois P. Heinz, Sep 09 2011