A157877 Expansion of (1-x)*x/(x^2-30*x+1).
1, 29, 869, 26041, 780361, 23384789, 700763309, 20999514481, 629284671121, 18857540619149, 565096933903349, 16934050476481321, 507456417360536281, 15206758470339607109, 455695297692827676989, 13655652172314490702561, 409213869871741893399841
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (30,-1).
Programs
-
Magma
I:=[1,29,869]; [n le 3 select I[n] else 30*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 25 2014
-
Mathematica
LinearRecurrence[{30,-1},{1,29},30] (* Harvey P. Dale, Dec 14 2011 *) CoefficientList[Series[(1 - x)/(x^2 - 30 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
-
PARI
Vec((1-x)*x/(x^2-30*x+1)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
Formula
G.f.: (1-x)*x/(x^2-30*x+1).
a(1)=1, a(2)=29; for n>2, a(n) = 30*a(n-1)-a(n-2).
7*A157879(n)+1 = a(n)^2.
a(n) = (1/8)*(4-sqrt(14))*(1+(15+4*sqrt(14))^(2*n-1))/(15+4*sqrt(14))^(n-1). - Bruno Berselli, Feb 25 2014
From Andrea Pinos, Oct 05 2022: (Start)
a(n) = ceiling((C^n)/(C+1)), where C = 15 + 4*sqrt(14) = sqrt(225) + sqrt(224).
Limit_{n->oo} a(n+1)/a(n) = C. (End)
Extensions
Edited by Alois P. Heinz, Sep 09 2011
Comments