cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157914 a(n) = 8*n^2 - 1.

Original entry on oeis.org

7, 31, 71, 127, 199, 287, 391, 511, 647, 799, 967, 1151, 1351, 1567, 1799, 2047, 2311, 2591, 2887, 3199, 3527, 3871, 4231, 4607, 4999, 5407, 5831, 6271, 6727, 7199, 7687, 8191, 8711, 9247, 9799, 10367, 10951, 11551, 12167, 12799, 13447, 14111, 14791
Offset: 1

Views

Author

Vincenzo Librandi, Mar 09 2009

Keywords

Comments

The identity (8*n^2 - 1)^2 - (16*n^2 - 4)*(2*n)^2 = 1 can be written as a(n)^2 - A158443(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 7, in the direction 7, 31, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011
Bisection of A195605 (odd part). - Bruno Berselli, Sep 21 2011
The identity (8*n^2 - 1)^2 - (64*n^2 - 16)*(n)^2 = 1 can be written as a(n)^2 - A157913(n)*(n)^2 = 1. - Vincenzo Librandi, Feb 09 2012

Crossrefs

Programs

  • Magma
    I:=[7, 31, 71]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    Table[8n^2-1,{n,50}]
    LinearRecurrence[{3,-3,1},{7,31,71},50] (* Harvey P. Dale, Jul 16 2025 *)
  • PARI
    a(n)=8*n^2-1 \\ Charles R Greathouse IV, Sep 03 2011

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(7+10*x-x^2)/(1-x)^3.
a(n) = A139098(n) - 1. - Omar E. Pol, Sep 03 2011
E.g.f.: (8*x^2 + 8*x - 1)*exp(x) + 1. - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(8))*cot(Pi/sqrt(8)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(8))*csc(Pi/sqrt(8)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(8))*csc(Pi/sqrt(8)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(8))/sqrt(2). (End)