cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158035 a(n) = 2*A158034(n) + 1, prime numbers p for which f = (2^p - 2^((p - 1) / 2 + 1) + 4p^2 - 8p) / (2p^2 - 2p) is an integer.

Original entry on oeis.org

7, 23, 47, 167, 263, 359, 383, 479, 487, 503, 719, 839, 863, 887, 983, 1319, 1367, 1439, 1487, 1783, 1823, 2039, 2063, 2207, 2447, 2879, 2903, 2999, 3023, 3079, 3119, 3167, 3623, 3863, 4007, 4079, 4127, 4423, 4679, 4703, 4799, 4919, 5023, 5087, 5399, 5639
Offset: 1

Views

Author

Reikku Kulon, Mar 11 2009

Keywords

Comments

(p - 1) / 2 is often prime.

Crossrefs

Cf. A158034.
Cf. A002515 (Lucasian primes).
Cf. A145918 (exponential Sophie Germain primes).
Cf. A046318, A139876 (related to composite members of A158034: 243, 891, 1539, and 2511).

Programs

  • Maple
    A158035 := proc(n) local i,am,p,tren;
    am := [ ]:
    for i from 2 to n do
      p := ithprime(i):
      tren := (2^(p) - 2^((p - 1) / 2 + 1) + 4*p^(2) - 8*p) / (2*p^(2) - 2*p):
      if (type( tren, 'integer') = 'true') then
        am := [op(am),p]:
      fi
    od; RETURN(am) end:
    A158035(740); # Jani Melik, May 06 2013
  • Mathematica
    Select[Prime[Range[800]],IntegerQ[(2^#-2^((#-1)/2+1)+4#^2-8#)/(2#^2-2#)]&] (* Harvey P. Dale, Nov 08 2017 *)