A158035 a(n) = 2*A158034(n) + 1, prime numbers p for which f = (2^p - 2^((p - 1) / 2 + 1) + 4p^2 - 8p) / (2p^2 - 2p) is an integer.
7, 23, 47, 167, 263, 359, 383, 479, 487, 503, 719, 839, 863, 887, 983, 1319, 1367, 1439, 1487, 1783, 1823, 2039, 2063, 2207, 2447, 2879, 2903, 2999, 3023, 3079, 3119, 3167, 3623, 3863, 4007, 4079, 4127, 4423, 4679, 4703, 4799, 4919, 5023, 5087, 5399, 5639
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 112.
Crossrefs
Programs
-
Maple
A158035 := proc(n) local i,am,p,tren; am := [ ]: for i from 2 to n do p := ithprime(i): tren := (2^(p) - 2^((p - 1) / 2 + 1) + 4*p^(2) - 8*p) / (2*p^(2) - 2*p): if (type( tren, 'integer') = 'true') then am := [op(am),p]: fi od; RETURN(am) end: A158035(740); # Jani Melik, May 06 2013
-
Mathematica
Select[Prime[Range[800]],IntegerQ[(2^#-2^((#-1)/2+1)+4#^2-8#)/(2#^2-2#)]&] (* Harvey P. Dale, Nov 08 2017 *)
Comments