A158186 a(n) = 10*n^2 - 7*n + 1.
1, 4, 27, 70, 133, 216, 319, 442, 585, 748, 931, 1134, 1357, 1600, 1863, 2146, 2449, 2772, 3115, 3478, 3861, 4264, 4687, 5130, 5593, 6076, 6579, 7102, 7645, 8208, 8791, 9394, 10017, 10660, 11323, 12006, 12709, 13432, 14175, 14938, 15721, 16524, 17347
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[10n^2-7n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,4,27},50] (* Harvey P. Dale, Apr 06 2020 *)
-
PARI
a(n)=10*n^2-7*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = (2*n-1)*(5*n-1).
G.f.: (1+x+18*x^2)/(1-x)^3. - Jaume Oliver Lafont, Mar 27 2009
a(n) = a(n-1) + 20*n - 17 (with a(0)=1). - Vincenzo Librandi, Dec 03 2010
Sum_{n>=0} 1/a(n) = 1 + (2*sqrt(1+2/sqrt(5))*Pi - 2*sqrt(5)*log(phi) - 5*log(5) + 8*log(2))/12, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 22 2022
Extensions
Typo in definition corrected by Reinhard Zumkeller, Dec 03 2009
Comments