cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158187 a(n) = 10*n^2 + 1.

Original entry on oeis.org

1, 11, 41, 91, 161, 251, 361, 491, 641, 811, 1001, 1211, 1441, 1691, 1961, 2251, 2561, 2891, 3241, 3611, 4001, 4411, 4841, 5291, 5761, 6251, 6761, 7291, 7841, 8411, 9001, 9611, 10241, 10891, 11561, 12251, 12961, 13691, 14441, 15211, 16001, 16811, 17641
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 13 2009

Keywords

Comments

Sequence found by reading the segment (1, 11) together with the line from 11, in the direction 11, 41, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011
The identity (10n^2 + 1)^2 - (25n^2 + 5)*(2n)^2 = 1 can be written as a(n)^2 - A158445(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Jan 03 2012

Crossrefs

Cf. A158445, A005843. - Vincenzo Librandi, Mar 19 2009

Programs

Formula

a(n) = A033583(n) + 1.
For n > 0: a(n) = A010010(n)/2.
From Vincenzo Librandi, Jan 03 2012: (Start)
G.f: x*(11 + 8*x + x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(10))*coth(Pi/sqrt(10)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(10))*csch(Pi/sqrt(10)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(10))*sinh(Pi/sqrt(5)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(10))*csch(Pi/sqrt(10)). (End)
E.g.f.: exp(x)*(1 + 10*x + 10*x^2). - Stefano Spezia, Feb 05 2021