A158187 a(n) = 10*n^2 + 1.
1, 11, 41, 91, 161, 251, 361, 491, 641, 811, 1001, 1211, 1441, 1691, 1961, 2251, 2561, 2891, 3241, 3611, 4001, 4411, 4841, 5291, 5761, 6251, 6761, 7291, 7841, 8411, 9001, 9611, 10241, 10891, 11561, 12251, 12961, 13691, 14441, 15211, 16001, 16811, 17641
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[10*n^2+1,{n,0,50}] (* Vincenzo Librandi, Jan 03 2012 *)
-
PARI
a(n)=10*n^2+1 \\ Charles R Greathouse IV, Oct 16 2015
Formula
a(n) = A033583(n) + 1.
For n > 0: a(n) = A010010(n)/2.
From Vincenzo Librandi, Jan 03 2012: (Start)
G.f: x*(11 + 8*x + x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(10))*coth(Pi/sqrt(10)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(10))*csch(Pi/sqrt(10)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(10))*sinh(Pi/sqrt(5)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(10))*csch(Pi/sqrt(10)). (End)
E.g.f.: exp(x)*(1 + 10*x + 10*x^2). - Stefano Spezia, Feb 05 2021
Comments