cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158387 a(n) = -1 if n is a square, 1 if n is not a square.

Original entry on oeis.org

-1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 17 2009

Keywords

Comments

Equivalently, a(n) is the sign of (-1)^[parity of number of divisors of n].

Examples

			a(12) = (-1)^6 = 1.
		

Crossrefs

Cf. primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1), k = natural numbers (A000027).

Programs

  • Mathematica
    Array[1 - 2 Boole[OddQ@ DivisorSigma[0, #]] &, 100] (* Michael De Vlieger, Nov 03 2017 *)
    Table[If[IntegerQ[Sqrt[n]],-1,1],{n,120}] (* Harvey P. Dale, Feb 17 2020 *)
  • PARI
    a(n) = (-1)^numdiv(n) \\ Michel Marcus, Jun 13 2013
    
  • PARI
    a(n)=(-1)^issquare(n) \\ Charles R Greathouse IV, Jun 13 2013
    
  • PARI
    first(n) = my(res = vector(n, i, -1)); for(i = 1, sqrtint(n), res[i^2] = 1); res \\ David A. Corneth, Nov 03 2017

Formula

a(n) = (-1)^tau(n) = (-1)^A000005(n).
a(1) = -1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = (-1)^(k+1), for p, q, ..., z primes.
Sum_{k=1..n} a(k) ~ n - 2*sqrt(n). - Amiram Eldar, Jan 13 2024

Extensions

Description corrected by David A. Corneth, Nov 03 2017