cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158405 Triangle T(n,m) = 1+2*m of odd numbers read along rows, 0<=m

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 11, 1, 3, 5, 7, 9, 11, 13, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 17, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23
Offset: 1

Views

Author

Paul Curtz, Mar 18 2009

Keywords

Comments

Row sums are n^2 = A000290(n).
The triangle sums, see A180662 for their definitions, link this triangle of odd numbers with seventeen different sequences, see the crossrefs. The knight sums Kn14 - Kn110 have been added. - Johannes W. Meijer, Sep 22 2010
A208057 is the eigentriangle of A158405 such that as infinite lower triangular matrices, A158405 * A208057 shifts the latter, deleting the right border of 1's. - Gary W. Adamson, Feb 22 2012
T(n,k) = A099375(n-1,n-k), 1<=k<=n. [Reinhard Zumkeller, Mar 31 2012]

Examples

			The triangle contains the first n odd numbers in row n:
  1;
  1,3;
  1,3,5;
  1,3,5,7;
From _Seiichi Manyama_, Dec 02 2017: (Start)
    |       a(n)        |                               | A000290(n)
   -----------------------------------------------------------------
   0|                                                      (=  0)
   1|                 1 = 1/3 * ( 3)                       (=  1)
   2|             1 + 3 = 1/3 * ( 5 +  7)                  (=  4)
   3|         1 + 3 + 5 = 1/3 * ( 7 +  9 + 11)             (=  9)
   4|     1 + 3 + 5 + 7 = 1/3 * ( 9 + 11 + 13 + 15)        (= 16)
   5| 1 + 3 + 5 + 7 + 9 = 1/3 * (11 + 13 + 15 + 17 + 19)   (= 25)
(End)
		

Crossrefs

Triangle sums (see the comments): A000290 (Row1; Kn11 & Kn4 & Ca1 & Ca4 & Gi1 & Gi4); A000027 (Row2); A005563 (Kn12); A028347 (Kn13); A028560 (Kn14); A028566 (Kn15); A098603 (Kn16); A098847 (Kn17); A098848 (Kn18); A098849 (Kn19); A098850 (Kn110); A000217 (Kn21. Kn22, Kn23, Fi2, Ze2); A000384 (Kn3, Fi1, Ze3); A000212 (Ca2 & Ze4); A000567 (Ca3, Ze1); A011848 (Gi2); A001107 (Gi3). - Johannes W. Meijer, Sep 22 2010

Programs

  • Haskell
    a158405 n k = a158405_row n !! (k-1)
    a158405_row n = a158405_tabl !! (n-1)
    a158405_tabl = map reverse a099375_tabl
    -- Reinhard Zumkeller, Mar 31 2012
    
  • Mathematica
    Table[2 Range[1, n] - 1, {n, 12}] // Flatten (* Michael De Vlieger, Oct 01 2015 *)
  • PARI
    a(n) = 2*(n-floor((-1+sqrt(8*n-7))/2)*(floor((-1+sqrt(8*n-7))/2)+1)/2)-1;
    vector(100, n, a(n)) \\ Altug Alkan, Oct 01 2015

Formula

a(n) = 2*i-1, where i = n-t(t+1)/2, t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 03 2013
a(n) = 2*A002262(n-1) + 1. - Eric Werley, Sep 30 2015

Extensions

Edited by R. J. Mathar, Oct 06 2009