cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158441 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1+x^n) /n ).

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 7, 7, 9, 14, 18, 20, 31, 34, 42, 61, 69, 83, 109, 127, 156, 203, 228, 276, 347, 404, 477, 591, 683, 801, 990, 1132, 1323, 1598, 1837, 2148, 2560, 2929, 3405, 4018, 4608, 5319, 6244, 7124, 8184, 9569, 10877, 12465, 14457, 16412, 18761, 21633
Offset: 0

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Also the number of partitions of n in which each part occurs a triangle number (>=0) times. - Seiichi Manyama, May 11 2018

Examples

			From _Seiichi Manyama_, Mar 11 2018: (Start)
n | Partitions of n in which each part occurs a triangle number (>=0) times.
--+-------------------------------------------------------------------------
1 | 1;
2 | 2;
3 | 3 = 2+1 = 1+1+1;
4 | 4 = 3+1;
5 | 5 = 4+1 = 3+2 = 2+1+1+1;
6 | 6 = 5+1 = 4+2 = 3+2+1 = 3+1+1+1 = 2+2+2 = 1+1+1+1+1+1;
7 | 7 = 6+1 = 5+2 = 4+3 = 4+2+1 = 4+1+1+1 = 2+2+2+1; (End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; -add((-1)^d, d=divisors(n)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, May 11 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(k*j))*(1 + x^(k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2018 *)
  • PARI
    {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, sigma(m)*x^m/(1+x^m+x*O(x^n))/m)), n))}
    
  • PARI
    N=99; x='x+O('x^N);
    gf=1/prod(n=1,N,eta(x^n)^((-1)^(n-1)));
    Vec(gf) /* Joerg Arndt, Jun 24 2011 */

Formula

Euler transform of A048272. [Vladeta Jovovic, Mar 28 2009]
G.f.: 1/prod(n>=1, P(x^n)^((-1)^(n-1)) ) where P(x) = prod(k>=1, 1-x^k ), see Pari code. [Joerg Arndt, Jun 24 2011]
G.f.: Product_{k>0} (Sum_{m>=0} x^(k*m*(m+1)/2)) = (1+x+x^3+x^6+...)*(1+x^2+x^6+x^12+...)*(1+x^3+x^9+x^18+...)*... . - Seiichi Manyama, May 11 2018
a(n) ~ (log(2))^(3/8) * exp(Pi*sqrt(2*log(2)*n/3)) / (2^(11/8) * 3^(3/8) * Pi^(1/4) * n^(7/8)). - Vaclav Kotesovec, Oct 08 2018