cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A158480 a(n) = 12*n^2 + 1.

Original entry on oeis.org

1, 13, 49, 109, 193, 301, 433, 589, 769, 973, 1201, 1453, 1729, 2029, 2353, 2701, 3073, 3469, 3889, 4333, 4801, 5293, 5809, 6349, 6913, 7501, 8113, 8749, 9409, 10093, 10801, 11533, 12289, 13069, 13873, 14701, 15553, 16429, 17329, 18253, 19201, 20173, 21169
Offset: 0

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (12*n^2 + 1)^2 - (36*n^2 + 6)*(2*n)^2 = 1 can be written as a(n)^2 - A158479(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 13, in the direction 13, 49, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			a(1) = 12*1^2 + 1 = 13.
a(2) = 12*2^2 + 1 = 49.
a(3) = 12*3^2 + 1 = 109.
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> 12*n^2 + 1); # G. C. Greubel, Nov 06 2019
  • Magma
    I:=[13,49,109];[n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]];
    
  • Maple
    seq(12*n^2 +1, n=0..45); # G. C. Greubel, Nov 06 2019
  • Mathematica
    LinearRecurrence[{3,-3,1}, {13,49,109}, 40]
    12*Range[40]^2 +1 (* G. C. Greubel, Nov 06 2019 *)
  • PARI
    a(n)=12*n^2+1
    
  • Sage
    [12*n^2 +1 for n in (1..40)] # G. C. Greubel, Nov 06 2019
    

Formula

a(n) = A010014(n)/2. - Vladimir Joseph Stephan Orlovsky, May 18 2009
G.f: (13*x^2 + 10*x + 1)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 1 + A135453(n). - Omar E. Pol, Jul 18 2012
a(n) = (A016969(n-1)*A016921(n) + 4)/3. - Hilko Koning, Oct 25 2019
E.g.f.: (1 + 12*x + 12*x^2)*exp(x). - G. C. Greubel, Nov 06 2019
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(12))*coth(Pi/sqrt(12)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(12))*csch(Pi/sqrt(12)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(12))*sinh(Pi/sqrt(6)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(12))*csch(Pi/sqrt(12)). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 12 2021
Showing 1-1 of 1 results.