cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158488 a(n) = 64*n^2 + 8.

Original entry on oeis.org

72, 264, 584, 1032, 1608, 2312, 3144, 4104, 5192, 6408, 7752, 9224, 10824, 12552, 14408, 16392, 18504, 20744, 23112, 25608, 28232, 30984, 33864, 36872, 40008, 43272, 46664, 50184, 53832, 57608, 61512, 65544, 69704, 73992, 78408, 82952, 87624, 92424, 97352, 102408
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (16*n^2 + 1)^2 - (64*n^2 + 8)*(2*n)^2 = 1 can be written as A108211(n)^2 - a(n)*A005843(n)^2 = 1. - rewritten by Bruno Berselli, Nov 16 2011

Crossrefs

Programs

  • Magma
    I:=[72,264,584]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 08 2012
    
  • Maple
    A158488:=n->64*n^2+8: seq(A158488(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2017
  • Mathematica
    64Range[40]^2+8 (* or *) LinearRecurrence[{3,-3,1},{72,264,584},40] (* Harvey P. Dale, Nov 16 2011 *)
  • PARI
    for(n=1, 40, print1(64*n^2 + 8", ")); \\ Vincenzo Librandi, Feb 08 2012

Formula

a(1)=72, a(2)=264, a(3)=584, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 16 2011
G.f: x*(72 + 48*x + 8*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 08 2012
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)) - 1)/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/(2*sqrt(2)))*Pi/(2*sqrt(2)))/16. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 8*(exp(x)*(8*x^2 + 8*x + 1) - 1).
a(n) = 8*A081585(n). (End)