cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377759 Number of edge cuts in the n-double cone graph.

Original entry on oeis.org

1, 12, 156, 2652, 47580, 835132, 14274492, 239210620, 3954121852, 64745687292, 1053187674876, 17052187400700, 275180267037180, 4430223031522300, 71202253472533500, 1142950923338418172, 18330518457789188092, 293793080103272648700, 4706573484385846964220
Offset: 0

Views

Author

Eric W. Weisstein, Nov 06 2024

Keywords

Comments

Extended to a(0) using the formula/recurrence. - Eric W. Weisstein, Dec 01 2024

Crossrefs

Cf. A158525.

Programs

  • Mathematica
    Table[16^n - 4 - 2^(n + 1) + -2^n ((3 + 2 Sqrt[2])^n + (3 - 2 Sqrt[2])^n) + 4 ((2 - Sqrt[2])^n + (2 + Sqrt[2])^n), {n, 0, 20}] // Expand (* Eric W. Weisstein, Dec 01 2024 *)
    Table[16^n - 4 - 2^(n + 1) (ChebyshevT[n, 3] + 1) + 4 ((2 - Sqrt[2])^n + (2 + Sqrt[2])^n), {n, 0, 20}] // Expand (* Eric W. Weisstein, Dec 01 2024 *)
    LinearRecurrence[{35, -408, 1898, -3980, 3880, -1680, 256}, {1, 12, 156, 2652, 47580, 835132, 14274492}, 20] (* Eric W. Weisstein, Dec 01 2024 *)
    CoefficientList[Series[-(1 - 23 x + 144 x^2 + 190 x^3 - 388 x^4 - 360 x^5 + 16 x^6)/((-1 + x) (-1 + 2 x) (-1 + 16 x) (1 - 4 x + 2 x^2) (1 - 12 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2024 *)

Formula

a(n) = 16^n - A158525(n+1)^2. - Christian Sievers, Nov 21 2024
G.f.: -(1-23*x+144*x^2+190*x^3-388*x^4-360*x^5+16*x^6)/((-1+x)*(-1+2*x)*(-1+16*x)*(1-4*x+2*x^2)*(1-12*x+4*x^2)). - Eric W. Weisstein, Dec 01 2024
a(n) = 35*a(n-1)-408*a(n-2)+1898*a(n-3)-3980*a(n-4)+3880*a(n-5)-1680*a(n-6)+256*a(n-7). - Eric W. Weisstein, Dec 01 2024

Extensions

a(7) and beyond from Christian Sievers, Nov 21 2024

A377501 a(n) = 2 + 4^(n - 1) - (2 - sqrt(2))^(n - 1) - (2 + sqrt(2))^(n - 1).

Original entry on oeis.org

1, 2, 6, 26, 122, 562, 2514, 10978, 47074, 199106, 833346, 3459458, 14268290, 58542850, 239189250, 973889026, 3954048514, 16015899650, 64745436162, 261309683714, 1053186816002, 4239883710466, 17052184465410, 68525063462914, 275180257009666, 1104408389468162
Offset: 1

Views

Author

Eric W. Weisstein, Oct 30 2024

Keywords

Comments

a(n) is also the number of edge cuts in the wheel graph on n vertices for n > 3.

Crossrefs

Cf. A158525.

Programs

  • Mathematica
    Table[2 + 4^(n - 1) - (2 - Sqrt[2])^(n - 1) - (2 + Sqrt[2])^(n - 1), {n, 26}]
    LinearRecurrence[{9, -26, 26, -8}, {1, 2, 6, 26}, 20]
    CoefficientList[Series[-(-1 + 7 x - 14 x^2 + 2 x^3)/((-1 + x) (-1 + 4 x) (1 - 4 x + 2 x^2)), {x, 0, 20}], x]

Formula

a(n) = 2 + 4^(n - 1) - (2 - sqrt(2))^(n - 1) - (2 + sqrt(2))^(n - 1) = 2+4^(n-1)-2*A006012(n-1).
a(n) = 9*a(n-1)-26*a(n-2)+26*a(n-3)-8*a(n-4).
G.f.: -x*(-1+7*x-14*x^2+2*x^3)/((-1+x)*(-1+4*x)*(1-4*x+2*x^2)).
a(n) = 2^(2*(n-1))-A158525(n) for n >= 4. - Pontus von Brömssen, Nov 06 2024
E.g.f.: exp(2*x)*(-2*cosh(sqrt(2)*x) - 2*sinh(x) + cosh(x)*(2 + sinh(x)) + sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Nov 08 2024
Showing 1-2 of 2 results.