cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158757 Expansion of e.g.f. exp(t*x)/(1 - x^2/t^2 - t^3* x^3).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 7, 24, 0, 0, 0, 12, 0, 0, 0, 25, 0, 0, 120, 0, 0, 0, 260, 0, 0, 0, 61, 720, 0, 0, 0, 360, 0, 0, 0, 1470, 0, 0, 0, 841, 0, 0, 5040, 0, 0, 0, 15960, 0, 0, 0, 5082, 0, 0, 0, 5251, 40320, 0, 0, 0, 20160, 0, 0, 0, 122640, 0, 0, 0, 134456, 0, 0, 0, 20497
Offset: 0

Views

Author

Roger L. Bagula, Mar 25 2009

Keywords

Examples

			Irregular triangle begins as:
      1;
      0, 0,    1;
      2, 0,    0, 0,   1;
      0, 0,    6, 0,   0, 0,     7;
     24, 0,    0, 0,  12, 0,     0, 0,   25;
      0, 0,  120, 0,   0, 0,   260, 0,    0, 0,   61;
    720, 0,    0, 0, 360, 0,     0, 0, 1470, 0,    0, 0, 841;
      0, 0, 5040, 0,   0, 0, 15960, 0,    0, 0, 5082, 0,   0, 0, 5251;
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, page 221.

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t^2 - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
  • Sage
    f(x,t) = exp(t*x)/(1 - x^2/t^2 - t^3*x^3)
    def A158757(n,k): return ( factorial(n)*t^n*( f(x,t) ).series(x, 20).list()[n] ).series(t,2*n+1).list()[k]
    flatten([[A158757(n,k) for k in (0..2*n)] for n in (0..10)]) # G. C. Greubel, Dec 05 2021

Formula

T(n, k) = coefficients of e.g.f.: exp(t*x)/(1 - x^2/t^2 - t^3* x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, 2*n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 2) = A005212(n). (End)

Extensions

Edited by G. C. Greubel, Dec 01 2021