A158815 Triangle T(n,k) read by rows, matrix product of A046899(row-reversed) * A130595.
1, 1, 1, 4, 1, 1, 13, 5, 1, 1, 46, 16, 6, 1, 1, 166, 58, 19, 7, 1, 1, 610, 211, 71, 22, 8, 1, 1, 2269, 781, 261, 85, 25, 9, 1, 1, 8518, 2920, 976, 316, 100, 28, 10, 1, 1, 32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1
Offset: 0
Examples
The triangle starts 1; 1, 1; 4, 1, 1; 13, 5, 1, 1; 46, 16, 6, 1, 1; 166, 58, 19, 7, 1, 1; 610, 211, 71, 22, 8, 1, 1; 2269, 781, 261, 85, 25, 9, 1, 1; 8518, 2620, 976, 316, 100, 28, 10, 1, 1; 32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1; 122464, 41746, 13938, 4544, 1442, 441, 133, 34, 12, 1, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Filippo Disanto, Andrea Frosini and Simone Rinaldi, Renzo Pinzani, The Combinatorics of Convex Permutominoes, Southeast Asian Bulletin of Mathematics (2008) 32: 883-912.
Programs
-
Maple
A158815 := proc (n, k) add((-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k), j = 0..n); end proc: seq(seq(A158815(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
Mathematica
T[n_,k_]:= T[n,k]= Sum[(-1)^(j+k)*Binomial[j,k]*Binomial[2*n-j,n], {j,0,n}]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2021 *)
-
Sage
def A158815(n,k): return sum( (-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k) for j in (0..n) ) flatten([[A158815(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
Formula
Sum_{k=0..n} T(n,k) = A046899(n).
T(n,0) = A026641(n).
Sum_{k=0..n} T(n,k)*x^k = A026641(n), A000984(n), A001700(n), A000302(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Dec 03 2009
T(n, k) = Sum_{j=0..n} binomial(j, k)*binomial(2*n-j, n). - Peter Bala, Jul 13 2021
Comments