cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844, 153306, 199094, 115566, 16796
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009, Mar 29 2009

Keywords

Examples

			Square array of coefficients in iterations of x*C(x) begins:
  1,  1,   2,    5,    14,      42,      132,       429,       1430, ... A000108;
  1,  2,   6,   21,    80,     322,     1348,      5814,      25674, ... A121988;
  1,  3,  12,   54,   260,    1310,     6824,     36478,     199094, ... A158826;
  1,  4,  20,  110,   640,    3870,    24084,    153306,     993978, ... A158827;
  1,  5,  30,  195,  1330,    9380,    67844,    500619,    3755156, ... A158828;
  1,  6,  42,  315,  2464,   19852,   163576,   1372196,   11682348, ...;
  1,  7,  56,  476,  4200,   38052,   351792,   3305484,   31478628, ...;
  1,  8,  72,  684,  6720,   67620,   693048,   7209036,   75915708, ...;
  1,  9,  90,  945, 10230,  113190,  1273668,  14528217,  167607066, ...;
  1, 10, 110, 1265, 14960,  180510,  2212188,  27454218,  344320262, ...;
  1, 11, 132, 1650, 21164,  276562,  3666520,  49181418,  666200106, ...;
  1, 12, 156, 2106, 29120,  409682,  5841836,  84218134, 1225314662, ...;
  1, 13, 182, 2639, 39130,  589680,  8999172, 138755799, 2157976392, ...;
  1, 14, 210, 3255, 51520,  827960, 13464752, 221101608, 3660331064, ...;
  1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;
  1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...;
ILLUSTRATE ITERATIONS.
       Let G(x) = x*C(x), then the first few iterations of G(x) are:
           G(x) = x +   x^2 +  2*x^3 +   5*x^4 +  14*x^5 + ...;
        G(G(x)) = x + 2*x^2 +  6*x^3 +  21*x^4 +  80*x^5 + ...;
     G(G(G(x))) = x + 3*x^2 + 12*x^3 +  54*x^4 + 260*x^5 + ...;
  G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;
...
RELATED TRIANGLES.
The g.f. of column n is (g.f. of row n of A158830)/(1-x)^n
where triangle A158830 begins: 1;
      1,       0;
      2,       0,        0;
      5,       1,        0,        0;
     14,      10,        0,        0,       0;
     42,      70,        8,        0,       0,       0;
    132,     424,      160,        4,       0,       0,     0;
    429,    2382,     1978,      250,       1,       0,     0,   0;
   1430,   12804,    19508,     6276,     302,       0,     0,   0, 0;
   4862,   66946,   168608,   106492,   15674,     298,     0,   0, 0, 0;
  16796,  343772,  1337684,  1445208,  451948,   33148,   244,   0, 0, 0, 0;
  58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;
  ...
Triangle A158835 transforms one diagonal into the next:
       1;
       1,      1;
       4,      2,     1;
      27,     11,     3,    1;
     254,     94,    21,    4,   1;
    3062,   1072,   217,   34,   5,  1;
   45052,  15212,  2904,  412,  50,  6, 1;
  783151, 257777, 47337, 6325, 695, 69, 7, 1; ...
so that:
  A158835 * A158831 = A158832;
  A158835 * A158832 = A158833;
  A158835 * A158833 = A158834;
where the diagonals start:
  A158831 = [1, 1,  6,  54,  640,  9380,  163576,  3305484, ...];
  A158832 = [1, 2, 12, 110, 1330, 19852,  351792,  7209036, ...];
  A158833 = [1, 3, 20, 195, 2464, 38052,  693048, 14528217, ...];
  A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].
		

Crossrefs

Antidiagonal sums: A158829.
Related triangles: A158830, A158835.
Variant: A122888.

Programs

  • Mathematica
    Clear[row]; nmax = 12;
    row[n_]:= row[n]= CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] //Rest;
    T[n_, k_]:= row[n][[k]];
    Table[T[n-k+1, k], {n, nmax}, {k, n}]//Flatten (* Jean-François Alcover, Jul 13 2018, updated Aug 09 2018 *)
  • PARI
    {T(n,k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x);
    for(i=1, n, G=subst(F,x,G)); polcoeff(G,k)}

Formula

G.f. of column n = (g.f. of row n of A158830)/(1-x)^n.
Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). - Paul D. Hanna, Mar 30 2009
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000012(n), T(n, 2) = A000027(n).
T(n, 3) = A002378(n), T(n, 4) = A160378(n+1). (End)

A158835 Triangle, read by rows, that transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 11, 3, 1, 254, 94, 21, 4, 1, 3062, 1072, 217, 34, 5, 1, 45052, 15212, 2904, 412, 50, 6, 1, 783151, 257777, 47337, 6325, 695, 69, 7, 1, 15712342, 5074738, 906557, 116372, 12035, 1082, 91, 8, 1, 357459042, 113775490, 19910808, 2483706
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009, Mar 29 2009

Keywords

Comments

Conjecture: n-th reversed row polynomial is t_n where we start with vector v of fixed length m with elements v_i = 1, then set t := v and for i=1..m-1, for j=1..i, for k=j+1..i+1 apply v_k := v_k + z*v_{k-1} and t_{i+1} := v_{i+1} (after ending each cycle for j). - Mikhail Kurkov, Sep 03 2024

Examples

			Triangle T begins:
  1;
  1,1;
  4,2,1;
  27,11,3,1;
  254,94,21,4,1;
  3062,1072,217,34,5,1;
  45052,15212,2904,412,50,6,1;
  783151,257777,47337,6325,695,69,7,1;
  15712342,5074738,906557,116372,12035,1082,91,8,1;
  357459042,113775490,19910808,2483706,246596,20859,1589,116,9,1;
  9094926988,2861365660,492818850,60168736,5801510,470928,33747,2232,144,10,1;
  ...
Array A158825 of coefficients in iterations of x*C(x) begins:
  1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
  1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
  1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,...;
  1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;
  1,5,30,195,1330,9380,67844,500619,3755156,28558484,...;
  1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;
  1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;
  1,8,72,684,6720,67620,693048,7209036,75915708,807845676,...;
  1,9,90,945,10230,113190,1273668,14528217,167607066,...;
  1,10,110,1265,14960,180510,2212188,27454218,344320262,...;
  ...
This triangle transforms diagonals of A158825 into each other:
T*A158831 = A158832; T*A158832 = A158833; T*A158833 = A158834;
where:
A158831 = [1,1,6,54,640,9380,163576,3305484,...];
A158832 = [1,2,12,110,1330,19852,351792,7209036,...];
A158833 = [1,3,20,195,2464,38052,693048,14528217,...];
A158834 = [1,4,30,315,4200,67620,1273668,27454218,...].
		

Crossrefs

Cf. columns: A158836, A158837, A158838, A158839, row sums: A158840.

Programs

  • PARI
    {T(n, k)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+2))), M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, CAT)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Extensions

Edited by N. J. A. Sloane, Oct 04 2010, to make entries, offset, b-file and link to b-file all consistent.

A158831 A diagonal in the array A158825 of coefficients of successive iterations of x*C(x), where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 1, 6, 54, 640, 9380, 163576, 3305484, 75915708, 1952409954, 55573310936, 1734182983962, 58863621238500, 2159006675844616, 85088103159523296, 3585740237981536700, 160894462797493581048, 7658326127259130753070
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms this sequence into A158832, the next diagonal in A158825.

Examples

			Table of coefficients in the i-th iteration of x*Catalan(x):
(1);
1,(1),2,5,14,42,132,429,1430,4862,16796,58786,208012,...;
1,2,(6),21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,3,12,(54),260,1310,6824,36478,199094,1105478,6227712,...;
1,4,20,110,(640),3870,24084,153306,993978,6544242,43652340,...;
1,5,30,195,1330,(9380),67844,500619,3755156,28558484,...;
1,6,42,315,2464,19852,(163576),1372196,11682348,100707972,...;
1,7,56,476,4200,38052,351792,(3305484),31478628,303208212,...;
1,8,72,684,6720,67620,693048,7209036,(75915708),807845676,...;
1,9,90,945,10230,113190,1273668,14528217,167607066,(1952409954),...; ...
where terms in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    nmax = 18;
    g[x_] := Module[{y}, Expand[Normal[(1 - Sqrt[1 - 4*y])/2 + O[y]^(nmax+2)] /. y -> x][[1 ;; nmax+1]]];
    T = Table[Nest[g, x, n] // CoefficientList[#, x]& // Rest, {n, 1, nmax+1}];
    Prepend[Diagonal[T, 1], 1] (* Jean-François Alcover, Jul 13 2018 *)
  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+2))),G=x); for(i=1,n-1,G=subst(F,x,G));polcoeff(G,n)}

A158832 Main diagonal in the array A158825 of coefficients of successive iterations of x*C(x), where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 2, 12, 110, 1330, 19852, 351792, 7209036, 167607066, 4357308098, 125219900520, 3941126688798, 134808743674176, 4979127855477336, 197480359402576304, 8370550907396970684, 377599345119560766534, 18061714498169627460982
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms A158831 into this sequence, where A158831 is the previous diagonal in A158825.
Triangle A158835 transforms this sequence into A158833, the next diagonal in A158825.

Examples

			Array of coefficients in the i-th iteration of x*Catalan(x):
(1),1,2,5,14,42,132,429,1430,4862,16796,58786,208012,...;
1,(2),6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,3,(12),54,260,1310,6824,36478,199094,1105478,6227712,...;
1,4,20,(110),640,3870,24084,153306,993978,6544242,43652340,...;
1,5,30,195,(1330),9380,67844,500619,3755156,28558484,...;
1,6,42,315,2464,(19852),163576,1372196,11682348,100707972,...;
1,7,56,476,4200,38052,(351792),3305484,31478628,303208212,...;
1,8,72,684,6720,67620,693048,(7209036),75915708,807845676,...;
1,9,90,945,10230,113190,1273668,14528217,(167607066),...;
1,10,110,1265,14960,180510,2212188,27454218,344320262,(4357308098),...; ...
where terms in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{x, F, G}, F = InverseSeries[x - x^2 + O[x]^(n+2)]; G = x; For[i = 1, i <= n, i++, G = (F /. x -> G)]; Coefficient[G, x, n]];
    Array[a, 18] (* Jean-François Alcover, Jul 13 2018, from PARI *)
  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+2))),G=x); for(i=1,n,G=subst(F,x,G));polcoeff(G,n)}

A158833 A diagonal in the array A158825 of coefficients of successive iterations of x*C(x), where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 3, 20, 195, 2464, 38052, 693048, 14528217, 344320262, 9100230282, 265305808404, 8456446272144, 292528760419440, 10913859037065560, 436812586581170976, 18668379209883807385, 848499254768957476312
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms A158832 into this sequence, where A158832 is the previous diagonal in A158825.
Triangle A158835 transforms this sequence into A158834, the next diagonal in A158825.

Examples

			Array of coefficients in the i-th iteration of x*Catalan(x):
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,...;
(1),2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,(3),12,54,260,1310,6824,36478,199094,1105478,6227712,...;
1,4,(20),110,640,3870,24084,153306,993978,6544242,43652340,...;
1,5,30,(195),1330,9380,67844,500619,3755156,28558484,...;
1,6,42,315,(2464),19852,163576,1372196,11682348,100707972,...;
1,7,56,476,4200,(38052),351792,3305484,31478628,303208212,...;
1,8,72,684,6720,67620,(693048),7209036,75915708,807845676,...;
1,9,90,945,10230,113190,1273668,(14528217),167607066,...;
1,10,110,1265,14960,180510,2212188,27454218,(344320262),...;
1,11,132,1650,21164,276562,3666520,49181418,666200106,(9100230282),...; ...
where terms in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{x, F, G}, F = InverseSeries[x - x^2 + O[x]^(n+2)]; G = x; For[i = 1, i <= n+1, i++, G = (F /. x -> G)]; Coefficient[G, x, n]];
    Array[a, 17] (* Jean-François Alcover, Jul 13 2018, from PARI *)
  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+2))),G=x); for(i=1,n+1,G=subst(F,x,G));polcoeff(G,n)}

A166905 Triangle, read by rows, that transforms rows into diagonals in the table A158825 of coefficients in successive iterations of x*Catalan(x) (cf. A000108).

Original entry on oeis.org

1, 1, 1, 6, 4, 1, 54, 33, 9, 1, 640, 380, 108, 16, 1, 9380, 5510, 1610, 270, 25, 1, 163576, 95732, 28560, 5148, 570, 36, 1, 3305484, 1933288, 586320, 110929, 13650, 1071, 49, 1, 75915708, 44437080, 13658904, 2677008, 353600, 31624, 1848, 64, 1, 1952409954
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2009

Keywords

Examples

			Triangle begins:
1;
1,1;
6,4,1;
54,33,9,1;
640,380,108,16,1;
9380,5510,1610,270,25,1;
163576,95732,28560,5148,570,36,1;
3305484,1933288,586320,110929,13650,1071,49,1;
75915708,44437080,13658904,2677008,353600,31624,1848,64,1;
1952409954,1144564278,355787568,71648322,9962949,973845,66150,2988,81,1;
55573310936,32638644236,10243342296,2107966432,304857190,31795560,2395120,127720,4590,100,1;
...
Coefficients in iterations of x*Catalan(x) form table A158825:
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,...;
1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;
1,5,30,195,1330,9380,67844,500619,3755156,28558484,...;
1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;
1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;
...
This triangle T transforms rows into diagonals of A158825;
the initial diagonals begin:
A158831: [1,1,6,54,640,9380,163576,3305484,...];
A158832: [1,2,12,110,1330,19852,351792,7209036,...];
A158833: [1,3,20,195,2464,38052,693048,14528217,...];
A158834: [1,4,30,315,4200,67620,1273668,27454218,...].
For example:
T * [1,0,0,0,0,0,0,0,0,0,0,0,0, ...] = A158831;
T * [1,1,2,5,14,42,132,429,1430,...] = A158832;
T * [1,2,6,21,80,322,1348,5814, ...] = A158833;
T * [1,3,12,54,260, 1310, 6824, ...] = A158834.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x, G=serreverse(x-x^2+O(x^(n+3))), M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, G+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, G+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
Showing 1-6 of 6 results.