A159017
Numerator of Hermite(n, 3/8).
Original entry on oeis.org
1, 3, -23, -261, 1425, 37683, -114951, -7579989, 3009057, 1949504355, 4981904649, -608895679653, -3580317475407, 223074988560531, 2158637035450905, -93461683768765173, -1316530828322729919, 43902789604639578819, 847901139421483812393
Offset: 0
-
[Numerator((&+[(-1)^k*Factorial(n)*(3/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
-
Numerator[Table[HermiteH[n,3/8],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011*)
Table[4^n*HermiteH[n, 3/8], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
-
a(n)=numerator(polhermite(n,3/8)) \\ Charles R Greathouse IV, Jan 29 2016
A159019
Numerator of Hermite(n, 5/8).
Original entry on oeis.org
1, 5, -7, -355, -1103, 39925, 376105, -5785075, -113172895, 915114725, 37169367385, -106989875075, -13618566694895, -27008721445675, 5530280137847945, 39751307896902125, -2455777926682502975, -32631559276626402875, 1172785395732149604025
Offset: 0
-
[Numerator((&+[(-1)^k*Factorial(n)*(5/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
-
Numerator[Table[HermiteH[n,5/8],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
Table[4^n*HermiteH[n, 5/8], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
-
a(n)=numerator(polhermite(n,5/8)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(5*x - 16*x^2))) \\ G. C. Greubel, Jul 14 2018
A159028
Numerator of Hermite(n, 7/8).
Original entry on oeis.org
1, 7, 17, -329, -3935, 14567, 731569, 2324119, -147602623, -1628192825, 31112205649, 738807143543, -5779846383647, -324160867806041, 135290020954865, 146171098923790423, 958258482408197761, -68131793272123312249, -998215167334922767727
Offset: 0
-
[Numerator((&+[(-1)^k*Factorial(n)*(7/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
-
Numerator[Table[HermiteH[n,7/8],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
Table[4^n*HermiteH[n, 7/8], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
-
a(n)=numerator(polhermite(n,7/8)) \\ Charles R Greathouse IV, Jan 29 2016
-
x='x+O('x^30); Vec(serlaplace(exp(7*x - 16*x^2))) \\ G. C. Greubel, Jul 14 2018
Showing 1-3 of 3 results.