cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159047 Primes which are triangular numbers plus 3.

Original entry on oeis.org

3, 13, 31, 139, 193, 409, 499, 823, 1381, 1543, 2083, 2281, 3163, 3919, 6673, 7753, 9319, 9733, 17581, 19309, 21739, 22369, 24979, 27031, 27733, 30631, 39343, 40189, 51043, 53959, 54949, 57973, 62131, 67531, 70879, 81409, 85081, 86323, 91381
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n)== 1 (mod 6). [Proof: the triangular numbers are {0,1,3,4} (mod 6), see A104686. 3 plus triangular numbers in the same set, and only those == 1 (mod 6) can be primes.] - Zak Seidov, Oct 16 2015

Examples

			13=10+3, 31=28+3, 139=136+3, 193=190+3, 409=406+3, ...
		

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[s+=n;p=s+3;If[PrimeQ[p],AppendTo[lst,p]],{n,0,7!}];lst
    Select[Table[n*(n + 1)/2 + 3, {n, 0, 250}], PrimeQ] (* G. C. Greubel, Jul 13 2017 *)
    Select[Accumulate[Range[0,500]]+3,PrimeQ] (* Harvey P. Dale, Jul 30 2018 *)
  • PARI
    for(n=0, 1e3, if(isprime(k=3+n*(n+1)/2), print1(k", "))) \\ Altug Alkan, Oct 16 2015