A159075 a(1) = -1, otherwise a(n) = 0.
0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Wikipedia, Crank of a partition
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Mathematica
a[ n_] := -Boole[n == 1] (* Michael Somos, Nov 10 2013 *) PadRight[{0,-1},120,0] (* Harvey P. Dale, Jan 24 2019 *)
-
PARI
{a(n) = -(n == 1)} /* Michael Somos, Nov 10 2013 */
Formula
G.f.: -x.
Sum_{d|n} a(d)*a(n/d) = Sum_{1<=k<=n} a(k)*a(n-k+1) = A063524(n) = A000007(n - 1) for n >= 1. Sum_{d|n} a(d)*a(d) = Sum_{1<=k<=n} a(k)*a(k) = A000012(n) for n >= 1. Sum_{d|n} a(d)*b(n/d) = Sum_{1<=k<=n} a(k)*b(n-k+1) = -[b(n)] for any function b(n) and n >= 1. Sum_{d|n} a(d)*b(d) = Sum_{1<=k<=n} a(k)*b(k) = A057428(n) for any function b(n) with Abs[b(1)] >= 1 and n >= 1. a(n) = (-1) * A063524(n). a(n) = (-1) * A000007(n - 1) for n >= 1. Abs[a(n)] = A063524(n). Abs[a(n)] = A000007(n - 1) for n >= 1.
Extensions
Edited by N. J. A. Sloane, Apr 09 2009
Comments