A159307 Numerator of Hermite(n, 3/11).
1, 6, -206, -4140, 124716, 4755816, -122371464, -7639673616, 161459218320, 15759163430496, -257103196917984, -39679794683308224, 446329942095824064, 117908103412902026880, -696705377356050344064, -403652886627048369133824, 107123200040172534149376
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..434
Crossrefs
Cf. A159280.
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(6/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 26 2018
-
Magma
I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)-242*(n-2)*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jan 27 2018
-
Mathematica
Numerator[Table[HermiteH[n,3/11],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
-
PARI
a(n)=numerator(polhermite(n,3/11)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 26 2018: (Start)
a(n) = 11^n * Hermite(n,6/11).
E.g.f.: exp(6*x - 121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
a(n) = 6*a(n-1) - 242*(n-1)*a(n-2) for n>1. - Vincenzo Librandi, Jun 27 2018 [corrected by Georg Fischer, Dec 23 2019]