A159328 Transform of 1 by the T_{1,1} transformation (see link).
2, 4, 10, 24, 56, 130, 302, 702, 1632, 3794, 8820, 20504, 47666, 110810, 257602, 598852, 1392162, 3236384, 7523680, 17490434, 40660326, 94523790, 219741152, 510836202, 1187550092, 2760719024, 6417893090, 14919791314, 34684306786
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Richard Choulet Curtz-like transformation
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
Crossrefs
Cf. A034943.
Programs
-
Magma
I:=[2,4,10]; [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 26 2018
-
Mathematica
LinearRecurrence[{3,-2,1},{2,4,10},30] (* Harvey P. Dale, May 10 2016 *)
-
PARI
z='z+O('z^30); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*1+(z/(1-3*z+2*z^2-z^3))+((1-z+z^2)/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 26 2018
Formula
O.g.f f(z)=((1-z)^2/(1-3*z+2*z^2-z^3))*1+(z/(1-3*z+2*z^2-z^3))+((1-z+z^2)/(1-3*z+2*z^2-z^3)).
a(0), a(1)=4, a(2)=10 and for n>=0 a(n+3)=3*a(n+2)-2*a(n+1)+a(n).
a(n) = 2*A034943(n+2). - R. J. Mathar, Feb 19 2016