A159353 a(n) = the smallest positive integer such that a(n)*(2^n - 2) is a multiple of n.
1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 2, 1, 15, 1, 16, 11, 17, 35, 18, 1, 19, 13, 20, 1, 21, 1, 22, 3, 23, 1, 24, 7, 25, 17, 26, 1, 27, 55, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 5, 1, 36, 1, 37, 25, 38, 77, 39, 1, 40, 27, 41, 1, 42
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Denominator((2^n-2)/n): n in [1..84]]; // Juri-Stepan Gerasimov, Sep 09 2014
-
Mathematica
Array[Block[{k = 1}, While[! Divisible[k (2^# - 2), #], k++]; k] &, 84] (* Michael De Vlieger, Oct 30 2017 *)
-
PARI
a(n)=my(k=1);while((2^n-2)*k%n != 0,k++);return(k) \\ Edward Jiang, Sep 09 2014
-
PARI
a(n)=denominator(lift(Mod(2,n)^n-2)/n) \\ Charles R Greathouse IV, Sep 11 2014
Formula
a(n) = denominator((2^n - 2)/n). - Juri-Stepan Gerasimov, Sep 09 2014
Extensions
Extended by Ray Chandler, Apr 11 2009
Comments