cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A330718 a(n) = numerator(Sum_{k=1..n} (2^k-2)/k).

Original entry on oeis.org

0, 1, 3, 13, 25, 137, 245, 871, 517, 4629, 8349, 45517, 83317, 1074679, 1992127, 7424789, 13901189, 78403447, 147940327, 280060651, 531718651, 11133725681, 21243819521, 40621501691, 15565330735, 388375065019, 248882304985, 479199924517, 923951191477, 2973006070891
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Dec 28 2019

Keywords

Comments

If p > 3 is prime, then p^2 | a(p).
Note the similarity to Wolstenholme's theorem.
Conjecture: for n > 3, if n^2 | a(n), then n is prime.
Are there the weak pseudoprimes m such that m | a(m)?
Primes p such that p^3 | a(p) are probably A088164.
If p is an odd prime, then a(p+1) == A330719(p+1) (mod p).
If p > 3 is a prime, then p^2 | numerator(Sum_{k=1..p+1} F(k)), where F(n) = Sum_{k=1..n} (2^(k-1)-1)/k. Cf. A027612 (a weaker divisibility).

Examples

			Numerators of 0, 1, 3, 13/2, 25/2, 137/6, 245/6, ...
		

Crossrefs

Programs

  • Magma
    [Numerator( &+[(2^k -2)/k: k in [1..n]] ): n in [1..30]]; // G. C. Greubel, Dec 28 2019
    
  • Maple
    seq(numer(add((2^k -2)/k, k = 1..n)), n = 1..30); # G. C. Greubel, Dec 28 2019
  • Mathematica
    Numerator @ Accumulate @ Array[(2^# - 2)/# &, 30]
    Table[Numerator[Simplify[-(2^(n+1)*LerchPhi[2,1,n+1] +Pi*I +2*HarmonicNumber[n])]], {n,30}] (* G. C. Greubel, Dec 28 2019 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (2^k-2)/k)); \\ Michel Marcus, Dec 28 2019
    
  • Sage
    [numerator( sum((2^k -2)/k for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Dec 28 2019

Formula

a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k).
a(n+1) = numerator(a(n)/A330719(n) + A225101(n+1)/(2*A159353(n+1))).
a(p) = a(p-1) + A007663(n)*A330719(p-1) for p = prime(n) > 2.
a(n) = numerator(-(2^(n+1)*LerchPhi(2,1,n+1) + Pi*i + 2*HarmonicNumber(n))). - G. C. Greubel, Dec 28 2019
a(n) = numerator(A279683(n)/n!) for n > 0. - Amiram Eldar and Thomas Ordowski, Jan 15 2020
For n > 1, a(n) = A000265(A290347(n)). - Thomas Ordowski, Mar 29 2025

A225101 Numerator of (2^n - 2)/n.

Original entry on oeis.org

0, 1, 2, 7, 6, 31, 18, 127, 170, 511, 186, 2047, 630, 8191, 10922, 32767, 7710, 131071, 27594, 524287, 699050, 2097151, 364722, 8388607, 6710886, 33554431, 44739242, 19173961, 18512790, 536870911, 69273666, 2147483647, 2863311530, 8589934591, 34359738366, 34359738367, 3714566310
Offset: 1

Views

Author

Alonso del Arte, Apr 28 2013

Keywords

Comments

That (2^n - 2)/n is an integer when n is prime can easily be proved as a simple consequence of Fermat's little theorem.
It was believed long ago that (2^n - 2)/n is an integer only when n = 1 or a prime. In 1819, Frédéric Sarrus found the smallest counterexample, 341; these pseudoprimes are now sometimes called "Sarrus numbers" (A001567).

Examples

			a(4) = 7 because (2^4 - 2)/4 = 7/2.
a(5) = 6 because (2^5 - 2)/5 = 6.
a(6) = 31 because (2^6 - 2)/6 = 31/3.
		

References

  • Alkiviadis G. Akritas, Elements of Computer Algebra With Application. New York: John Wiley & Sons (1989): 66.
  • George P. Loweke, The Lore of Prime Numbers. New York: Vantage Press, 1982, p. 22.

Crossrefs

Cf. A001567, A064535, A159353 (denominators).

Programs

  • Magma
    [Numerator((2^n - 2)/n): n in  [1..60]]; // Vincenzo Librandi, Nov 09 2014
  • Maple
    A225101:=n->numer((2^n-2)/n): seq(A225101(n), n=1..50); # Wesley Ivan Hurt, Nov 10 2014
  • Mathematica
    Table[Numerator[(2^n - 2)/n], {n, 50}]
  • PARI
    vector(100, n, numerator((2^n - 2)/n)) \\ Colin Barker, Nov 09 2014
    

A146077 Numbers n such that gcd(n, 2^n-2) does not equal the least prime factor of n.

Original entry on oeis.org

28, 35, 45, 55, 70, 77, 95, 105, 112, 115, 119, 143, 153, 154, 155, 161, 165, 175, 186, 187, 196, 203, 209, 215, 221, 225, 231, 235, 238, 247, 253, 275, 276, 280, 285, 287, 295, 299, 319, 322, 323, 325, 329, 335, 341, 345, 355, 364, 371, 377, 385, 391, 395
Offset: 1

Views

Author

Ray Chandler, Apr 11 2009

Keywords

Comments

Also, positive integers n where A159353(n) differs from A032742(n).

Crossrefs

Programs

  • Mathematica
    Select[Range[400],GCD[#,2^#-2]!=FactorInteger[#][[1,1]]&] (* Harvey P. Dale, Dec 14 2015 *)

Extensions

Extended by Ray Chandler, Apr 11 2009

A091669 a(n) = (2^(n-1)/n!) * Product_{k=1..n-1} (2^k-1).

Original entry on oeis.org

1, 1, 2, 7, 42, 434, 7812, 248031, 14055090, 1436430198, 267176016828, 91151551074486, 57425477176926180, 67196011936600334340, 146782968474309770332296, 601204690999713530559792879
Offset: 1

Views

Author

Karol A. Penson, Jan 27 2004

Keywords

Comments

Primes p such that 2^p-2 divides a(p) are A216838. - Amiram Eldar and Thomas Ordowski, Jan 16 2020
For odd n > 1, if a(n-1) divides a(n) and n does not divide a(n), then n is a prime (for which 2 is a primitive root, A001122). Composite numbers m such that a(m-1) divides a(m) are the pseudoprimes A001567 and A006935. Numbers n > 1 such that a(m) divides a(n) for all m < n are primes 2, 3, 5, 7, and 13. These are the primes p for which gpf(2^p-2) = p. - Thomas Ordowski, Jan 17 2020
If p is a prime with primitive root 2, A001122, then p | a(p-1) + 2^(p-2). Conjecture: (for n > 2), if n | a(n-1) + 2^(n-2), then n is a prime (A001122). Note that if p is an odd prime for which 2 is not a primitive root, A216838, then p | a(p-1). - Amiram Eldar and Thomas Ordowski, Jan 19 2020

Crossrefs

Programs

  • Magma
    [1] cat [2^(n-1)/Factorial(n)*&*[(2^k-1):k in [1..n-1]]:n in [2..16]]; // Marius A. Burtea, Jan 16 2020
    
  • Maple
    seq( (2^(n-1)/n!)*mul(2^j-1, j=1..n-1), n=1..20); # G. C. Greubel, Feb 05 2020
  • Mathematica
    Table[QFactorial[n-1, 2] 2^(n-1)/n!, {n, 20}]
  • PARI
    a(n) = (2^(n-1)/n!) * prod(k=1, n-1, 2^k-1); \\ Michel Marcus, Jan 16 2020
    
  • Sage
    from sage.combinat.q_analogues import q_factorial
    [2^(n-1)*q_factorial(n-1, 2)/factorial(n) for n in (1..20)] # G. C. Greubel, Feb 05 2020

Formula

a(n) = 2^(n-1)*A005329(n-1)/n!.
a(n) = Product_{k=2..n} (2^k-2)/k = Product_{k=2..n} A225101(k)/A159353(k). - Thomas Ordowski, Jan 16 2020

Extensions

Corrected and edited by Thomas Ordowski, Jan 16 2020
Showing 1-4 of 4 results.