A064535
a(n) = (2^prime(n)-2)/prime(n); a(0) = 0 by convention.
Original entry on oeis.org
0, 1, 2, 6, 18, 186, 630, 7710, 27594, 364722, 18512790, 69273666, 3714566310, 53634713550, 204560302842, 2994414645858, 169947155749830, 9770521225481754, 37800705069076950, 2202596307308603178, 33256101992039755026, 129379903640264252430
Offset: 0
a(3) = 6, because prime(3) = 5, and (2^5 - 2)/5 = 30/5 = 6.
a(4) = 18, because prime(4) = 7, and (2^7 - 2)/7 = 126/7 = 18.
-
[0] cat [(2^NthPrime(n)-2)/NthPrime(n): n in [1..25]]; // Vincenzo Librandi, Sep 14 2018
-
A064535 := proc(n) ( 2^ithprime(n) - 2 )/ithprime(n); end;
-
Table[(2^Prime[n] - 2)/Prime[n], {n, 50}] (* Alonso del Arte, Apr 28 2013 *)
-
{ for (n=0, 100, if (n, a=(2^prime(n) - 2)/prime(n), a=0); write("b064535.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
A330718
a(n) = numerator(Sum_{k=1..n} (2^k-2)/k).
Original entry on oeis.org
0, 1, 3, 13, 25, 137, 245, 871, 517, 4629, 8349, 45517, 83317, 1074679, 1992127, 7424789, 13901189, 78403447, 147940327, 280060651, 531718651, 11133725681, 21243819521, 40621501691, 15565330735, 388375065019, 248882304985, 479199924517, 923951191477, 2973006070891
Offset: 1
Numerators of 0, 1, 3, 13/2, 25/2, 137/6, 245/6, ...
-
[Numerator( &+[(2^k -2)/k: k in [1..n]] ): n in [1..30]]; // G. C. Greubel, Dec 28 2019
-
seq(numer(add((2^k -2)/k, k = 1..n)), n = 1..30); # G. C. Greubel, Dec 28 2019
-
Numerator @ Accumulate @ Array[(2^# - 2)/# &, 30]
Table[Numerator[Simplify[-(2^(n+1)*LerchPhi[2,1,n+1] +Pi*I +2*HarmonicNumber[n])]], {n,30}] (* G. C. Greubel, Dec 28 2019 *)
-
a(n) = numerator(sum(k=1, n, (2^k-2)/k)); \\ Michel Marcus, Dec 28 2019
-
[numerator( sum((2^k -2)/k for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Dec 28 2019
A091669
a(n) = (2^(n-1)/n!) * Product_{k=1..n-1} (2^k-1).
Original entry on oeis.org
1, 1, 2, 7, 42, 434, 7812, 248031, 14055090, 1436430198, 267176016828, 91151551074486, 57425477176926180, 67196011936600334340, 146782968474309770332296, 601204690999713530559792879
Offset: 1
-
[1] cat [2^(n-1)/Factorial(n)*&*[(2^k-1):k in [1..n-1]]:n in [2..16]]; // Marius A. Burtea, Jan 16 2020
-
seq( (2^(n-1)/n!)*mul(2^j-1, j=1..n-1), n=1..20); # G. C. Greubel, Feb 05 2020
-
Table[QFactorial[n-1, 2] 2^(n-1)/n!, {n, 20}]
-
a(n) = (2^(n-1)/n!) * prod(k=1, n-1, 2^k-1); \\ Michel Marcus, Jan 16 2020
-
from sage.combinat.q_analogues import q_factorial
[2^(n-1)*q_factorial(n-1, 2)/factorial(n) for n in (1..20)] # G. C. Greubel, Feb 05 2020
Showing 1-3 of 3 results.
Comments