A330719
a(n) = denominator(Sum_{k=1..n} (2^(k-1) - 1)/k).
Original entry on oeis.org
1, 2, 2, 4, 4, 12, 12, 24, 8, 40, 40, 120, 120, 840, 840, 1680, 1680, 5040, 5040, 5040, 5040, 55440, 55440, 55440, 11088, 144144, 48048, 48048, 48048, 80080, 80080, 160160, 160160, 2722720, 544544, 4900896, 4900896, 93117024, 93117024, 465585120, 465585120, 465585120
Offset: 1
Denominators of 0, 1/2, 3/2, 13/4, 25/4, 137/12, 245/12, ...
-
[Denominator( &+[(2^(k-1)-1)/k: k in [1..n]] ): n in [1..45]]; // G. C. Greubel, Dec 28 2019
-
seq(denom(add((2^(k-1)-1)/k, k = 1..n)), n = 1..45); # G. C. Greubel, Dec 28 2019
-
Denominator@Accumulate@Array[(2^(#-1) -1)/# &, 45]
Table[Denominator[-(2^n*LerchPhi[2, 1, n+1] +Pi*I/2 +HarmonicNumber[n])], {n, 45}] (* G. C. Greubel, Dec 28 2019 *)
-
a(n) = denominator(sum(k=1, n, (2^(k-1)-1)/k)); \\ Michel Marcus, Dec 28 2019
-
[denominator( sum((2^(k-1)-1)/k for k in (1..n)) ) for n in (1..45)] # G. C. Greubel, Dec 28 2019
A108866
Numerator of Sum_{k=1..n} 2^k/k.
Original entry on oeis.org
0, 2, 4, 20, 32, 256, 416, 4832, 8192, 42496, 74752, 1467392, 2650112, 62836736, 115552256, 42790912, 79691776, 2535587840, 4766040064, 170851041280, 1617069867008, 3070050172928, 5843921666048, 256460544016384, 490390373269504, 4697678227177472, 9016382767235072
Offset: 0
The initial values of the sum are 2, 4, 20/3, 32/3, 256/15, 416/15, 4832/105, 8192/105, 42496/315, 74752/315, 1467392/3465, 2650112/3465, 62836736/45045, 115552256/45045, 42790912/9009, 79691776/9009, 2535587840/153153, 4766040064/153153, 170851041280/2909907, ...
- A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see p. 278.
-
Join[{0},Accumulate[Table[2^n/n,{n,30}]]//Numerator] (* Harvey P. Dale, Oct 28 2018 *)
-
a(n) = numerator(sum(k=1, n, 2^k/k)); \\ Michel Marcus, Mar 07 2020
A279683
Number of move operations required to sort all permutations of [n] by MTF sort.
Original entry on oeis.org
0, 0, 1, 9, 78, 750, 8220, 102900, 1463280, 23451120, 419942880, 8331634080, 181689298560, 4323472433280, 111534141438720, 3101254066310400, 92468631077222400, 2943141763622860800, 99596858633182310400, 3570677764371119001600, 135190500045467682816000
Offset: 0
a(0) = a(1) = 0 because 0 or 1 elements are already sorted.
a(2) = 1: [1,2] is sorted and [2,1] needs one move.
a(3) = 9: [1,2,3](0), [1,3,2]->[2,1,3]->[1,2,3](2), [2,1,3]->[1,2,3](1), [2,3,1]->[1,2,3](1), [3,1,2]->[1,3,2]->[2,1,3]->[1,2,3](3), [3,2,1]->[2,3,1]->[1,2,3](2); sum of all moves gives 0+2+1+1+3+2 = 9.
-
a:= proc(n) option remember;
`if`(n=0, 0, a(n-1)*n + (n-1)! * (2^(n-1)-1))
end:
seq(a(n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
(4*n-3)*a(n-1)-(n-1)*(5*n-7)*a(n-2)+(2*n-2)*(n-2)^2*a(n-3))
end:
seq(a(n), n=0..20);
-
a[0] = 0; a[n_] := a[n] = a[n-1]*n + (n-1)!*(2^(n-1) - 1);
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 30 2018 *)
A290347
Numerators of the Harary index for the n-halved cube graph.
Original entry on oeis.org
0, 1, 6, 26, 100, 1096, 3920, 13936, 16544, 296256, 1068672, 11652352, 42658304, 1100471296, 4079876096, 15205967872, 56939270144, 642281037824, 2423854317568, 9177027411968, 34846713511936, 1459319692460032, 5568939824513024, 21297365878571008
Offset: 1
First few terms are 0, 1, 6, 26, 100, 1096/3, 3920/3, 13936/3, 16544, 296256/5, ....
-
Table[-2^(n - 1) HarmonicNumber[n] - 2^(2 n - 1) Re[LerchPhi[2, 1, n + 1]], {n, 20}] // Numerator
A332786
a(n) = numerator(-1/n + Sum_{k=1..n} 2^(k-1)/k).
Original entry on oeis.org
0, 3, 3, 61, 25, 137, 343, 32663, 2357, 74689, 66671, 5299069, 2416531, 115545821, 106974277, 637525199, 74575583, 1588674349, 4496071973, 3234136824109, 1535024393629, 5843920343363, 5575228585159, 1961561381531581, 93953561866435, 9016382638527647, 2888981280567587, 200248741591132607, 96525489421136333
Offset: 1
a(5) = numerator(-1/5 + 1/1+2/2+4/3+8/4+16/5) = numerator(128/15 - 1/5) = numerator(25/3) = 25.
-
f:= proc(n) local k; numer(-1/n + add(2^(k-1)/k,k=1..n)) end proc:
map(f, [$1..30]); # Robert Israel, Sep 15 2024
-
n = 30; Numerator[Accumulate @ Table[(2^(k-1))/k, {k, 1, n}] - 1/Range[n]] (* Amiram Eldar, Feb 24 2020 *)
-
a(n) = numerator(-1/n + sum(k=1, n, 2^(k-1)/k)); \\ Michel Marcus, Feb 24 2020
A331343
a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.
Original entry on oeis.org
0, 1, 9, 39, 375, 685, 8575, 30485, 162855, 291627, 5785857, 10514427, 250200951, 461037291, 854622483, 3185234481, 101381371377, 190598779657, 6833215763803, 12935721409039, 24559552771039, 46750514134519, 2051664357879617, 3923102768811707, 37581323659852375
Offset: 1
-
[Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jan 14 2020
-
a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]
-
a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ Michel Marcus, Jan 14 2020
Showing 1-6 of 6 results.
Comments