cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A330718 a(n) = numerator(Sum_{k=1..n} (2^k-2)/k).

Original entry on oeis.org

0, 1, 3, 13, 25, 137, 245, 871, 517, 4629, 8349, 45517, 83317, 1074679, 1992127, 7424789, 13901189, 78403447, 147940327, 280060651, 531718651, 11133725681, 21243819521, 40621501691, 15565330735, 388375065019, 248882304985, 479199924517, 923951191477, 2973006070891
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Dec 28 2019

Keywords

Comments

If p > 3 is prime, then p^2 | a(p).
Note the similarity to Wolstenholme's theorem.
Conjecture: for n > 3, if n^2 | a(n), then n is prime.
Are there the weak pseudoprimes m such that m | a(m)?
Primes p such that p^3 | a(p) are probably A088164.
If p is an odd prime, then a(p+1) == A330719(p+1) (mod p).
If p > 3 is a prime, then p^2 | numerator(Sum_{k=1..p+1} F(k)), where F(n) = Sum_{k=1..n} (2^(k-1)-1)/k. Cf. A027612 (a weaker divisibility).

Examples

			Numerators of 0, 1, 3, 13/2, 25/2, 137/6, 245/6, ...
		

Crossrefs

Programs

  • Magma
    [Numerator( &+[(2^k -2)/k: k in [1..n]] ): n in [1..30]]; // G. C. Greubel, Dec 28 2019
    
  • Maple
    seq(numer(add((2^k -2)/k, k = 1..n)), n = 1..30); # G. C. Greubel, Dec 28 2019
  • Mathematica
    Numerator @ Accumulate @ Array[(2^# - 2)/# &, 30]
    Table[Numerator[Simplify[-(2^(n+1)*LerchPhi[2,1,n+1] +Pi*I +2*HarmonicNumber[n])]], {n,30}] (* G. C. Greubel, Dec 28 2019 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (2^k-2)/k)); \\ Michel Marcus, Dec 28 2019
    
  • Sage
    [numerator( sum((2^k -2)/k for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Dec 28 2019

Formula

a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k).
a(n+1) = numerator(a(n)/A330719(n) + A225101(n+1)/(2*A159353(n+1))).
a(p) = a(p-1) + A007663(n)*A330719(p-1) for p = prime(n) > 2.
a(n) = numerator(-(2^(n+1)*LerchPhi(2,1,n+1) + Pi*i + 2*HarmonicNumber(n))). - G. C. Greubel, Dec 28 2019
a(n) = numerator(A279683(n)/n!) for n > 0. - Amiram Eldar and Thomas Ordowski, Jan 15 2020
For n > 1, a(n) = A000265(A290347(n)). - Thomas Ordowski, Mar 29 2025

A001901 Successive numerators of Wallis's approximation to Pi/2 (reduced).

Original entry on oeis.org

1, 2, 4, 16, 64, 128, 256, 2048, 16384, 32768, 65536, 262144, 1048576, 2097152, 4194304, 67108864, 1073741824, 2147483648, 4294967296, 17179869184, 68719476736, 137438953472, 274877906944, 2199023255552
Offset: 0

Views

Author

Keywords

Comments

If p is prime, then a(p-2) == - A001902(p-2) (mod p). Cf. A064169 (third comment) and my formula here. Such pseudoprimes are 1467, 7831, ... Primes p such that a(p-2) == - A001902(p-2) (mod p^2) are 5, 45827, ... Cf. A355959, see also A330719 (third comment). - Thomas Ordowski, Oct 19 2024

Examples

			From _Wolfdieter Lang_, Dec 07 2017: (Start)
The Wallis numerators (N) and denominators (D) with partial products A(n) = A001900(n) and B(n) = A000246(n+1) in unreduced form, and a(n) and b(n) = A001902(n) in reduced form.
n, k:     0  1  2  3  4   5    6     7      8        9       10 ...
N(k):     1  2  2  4  4   6    6     8      8       10       10 ...
D(k):     1  1  3  3  5   5    7     7      9        9        9 ...
A(n):     1  2  4 16 64 384 2304 18432 147456  1474560 14745600 ...
B(n):     1  1  3  9 45 225 1575 11025  99225   893025  9823275 ...
a(n):     1  2  4 16 64 128  256  2048  16384    32768    65536 ...
b(n):     1  1  3  9 45  75  175  1225  11025    19845    43659 ...
n = 5: numerator(1*2*2*4*4*6/(1*1*3*3*5*5)) = numerator(384/225) = numerator(128/75) = 128. (End)
		

References

  • H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.

Crossrefs

Denominators are A001902. Subsequence of A000079.

Programs

  • Mathematica
    a[n_?EvenQ] := n!!^2/((n - 1)!!^2*(n + 1)); a[n_?OddQ] := ((n - 1)!!^2*(n + 1))/n!!^2; Table[a[n] // Numerator, {n, 0, 23}] (* Jean-François Alcover, Jun 19 2013 *)

Formula

(2*2*4*4*6*6*8*8*...*2n*2n*...)/(1*3*3*5*5*7*7*9*...*(2n-1)*(2n+1)*...) for n >= 1.
From Wolfdieter Lang, Dec 07 2017: (Start)
1/1 * 2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * ...; partial products (reduced). Here the numerators with offset 0.
a(n) = numerator(W(n)), for n >= 0, with W(n) = Product_{k=0..n} N(k)/D(k) (reduced), with N(k) = 2*floor((k+1)/2) for k >= 1 and N(0) = 1, and D(k) = 2*floor(k/2) + 1, for k >= 0. (End)
a(n) is the numerator of the continued fraction [1;1,1/2,1/3,...,1/n]. - Thomas Ordowski, Oct 19 2024

A279683 Number of move operations required to sort all permutations of [n] by MTF sort.

Original entry on oeis.org

0, 0, 1, 9, 78, 750, 8220, 102900, 1463280, 23451120, 419942880, 8331634080, 181689298560, 4323472433280, 111534141438720, 3101254066310400, 92468631077222400, 2943141763622860800, 99596858633182310400, 3570677764371119001600, 135190500045467682816000
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2016

Keywords

Comments

MTF sort is an (inefficient) sorting algorithm: the first element that is smaller than its predecessor is moved to front repeatedly until the sequence is sorted.
Conjecture: primes p such that p^4 divides a(p) are the Wolstenholme primes A088164. - Amiram Eldar and Thomas Ordowski, Jan 15 2020

Examples

			a(0) = a(1) = 0 because 0 or 1 elements are already sorted.
a(2) = 1: [1,2] is sorted and [2,1] needs one move.
a(3) = 9: [1,2,3](0), [1,3,2]->[2,1,3]->[1,2,3](2), [2,1,3]->[1,2,3](1), [2,3,1]->[1,2,3](1), [3,1,2]->[1,3,2]->[2,1,3]->[1,2,3](3), [3,2,1]->[2,3,1]->[1,2,3](2); sum of all moves gives 0+2+1+1+3+2 = 9.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 0, a(n-1)*n + (n-1)! * (2^(n-1)-1))
        end:
    seq(a(n), n=0..20);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
          (4*n-3)*a(n-1)-(n-1)*(5*n-7)*a(n-2)+(2*n-2)*(n-2)^2*a(n-3))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[n-1]*n + (n-1)!*(2^(n-1) - 1);
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 30 2018 *)

Formula

a(n) = a(n-1)*n + (n-1)! * (2^(n-1)-1) for n>0, a(0) = 0.
a(n) = (4*n-3)*a(n-1)-(n-1)*(5*n-7)*a(n-2)+(2*n-2)*(n-2)^2*a(n-3) for n>2.
a(n) ~ 2^n * (n-1)!. - Vaclav Kotesovec, Dec 25 2016
a(n) = n! * Sum_{k=1..n} (2^(k-1)-1)/k = A000142(n)*A330718(n)/A330719(n), for n > 0. - Amiram Eldar and Thomas Ordowski, Jan 15 2020

A290348 Denominators of the Harary index for the n-halved cube graph.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 15, 15, 105, 105, 105, 105, 315, 315, 315, 315, 3465, 3465, 3465, 693, 9009, 3003, 3003, 3003, 5005, 5005, 5005, 5005, 85085, 17017, 153153, 153153, 2909907, 2909907, 14549535
Offset: 1

Views

Author

Eric W. Weisstein, Jul 28 2017

Keywords

Examples

			First few terms are 0, 1, 6, 26, 100, 1096/3, 3920/3, 13936/3, 16544, 296256/5, ....
		

Crossrefs

Cf. A000265, A290347 (numerators), A330719.

Programs

  • Mathematica
    Table[-2^(n - 1) HarmonicNumber[n] - 2^(2 n - 1) Re[LerchPhi[2, 1, n + 1]], {n, 20}] // Denominator

Formula

a(n) = A000265(A330719(n)). - Thomas Ordowski, Mar 29 2025

A332786 a(n) = numerator(-1/n + Sum_{k=1..n} 2^(k-1)/k).

Original entry on oeis.org

0, 3, 3, 61, 25, 137, 343, 32663, 2357, 74689, 66671, 5299069, 2416531, 115545821, 106974277, 637525199, 74575583, 1588674349, 4496071973, 3234136824109, 1535024393629, 5843920343363, 5575228585159, 1961561381531581, 93953561866435, 9016382638527647, 2888981280567587, 200248741591132607, 96525489421136333
Offset: 1

Views

Author

Thomas Ordowski, Feb 24 2020

Keywords

Comments

If p > 3 is a prime, then p^2 | a(p).
Does the above statement follow from Wolstenholme's theorem?
If p is a Wolstenholme prime (A088164), then p^3 | a(p).
However, it should be noted that also 7^3 | a(7).
Conjecture: there are no pseudoprimes m such that m^2 | a(m).
Is 7^2 the only weak pseudoprime (i.e., a composite m such that m | a(m))?

Examples

			a(5) = numerator(-1/5 + 1/1+2/2+4/3+8/4+16/5) = numerator(128/15 - 1/5) = numerator(25/3) = 25.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; numer(-1/n + add(2^(k-1)/k,k=1..n)) end proc:
    map(f, [$1..30]); # Robert Israel, Sep 15 2024
  • Mathematica
    n = 30; Numerator[Accumulate @ Table[(2^(k-1))/k, {k, 1, n}] - 1/Range[n]] (* Amiram Eldar, Feb 24 2020 *)
  • PARI
    a(n) = numerator(-1/n + sum(k=1, n, 2^(k-1)/k)); \\ Michel Marcus, Feb 24 2020

Formula

a(n) = numerator(-2/n + S(n))/2 for odd n and a(n) = numerator(-2/n + S(n)) for even n, where S(n) = Sum_{k=1..n} 2^k/k, see A108866 / A229726.
a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k + Sum_{k=1..n-1} 1/k), see A330718 / A330719 and A001008 / A002805.

Extensions

More terms from Amiram Eldar, Feb 24 2020

A331343 a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.

Original entry on oeis.org

0, 1, 9, 39, 375, 685, 8575, 30485, 162855, 291627, 5785857, 10514427, 250200951, 461037291, 854622483, 3185234481, 101381371377, 190598779657, 6833215763803, 12935721409039, 24559552771039, 46750514134519, 2051664357879617, 3923102768811707, 37581323659852375
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jan 14 2020

Keywords

Comments

By Wolstenholme's theorem, if p > 3 is a prime, then p^3 | a(p).
Conjecture: for n > 3, if n^3 | a(n), then n is prime. If so, there are no such pseudoprimes.
Problem: are there weak pseudoprimes m such that m^2 | a(m)? None up to 5*10^4.
Composite numbers m such that m | a(m) are 9, 25, 49, 99, 121, 125, 169, 221, 289, 343, 357, 361, 399, 529, 665, 841, 961, 1331, 1369, 1443, 1681, 1849, 2183, ... Cf. A082180.
Prime numbers p such that p^4 | a(p) are probably only the Wolstenholme primes A088164.

Crossrefs

Programs

  • Magma
    [Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jan 14 2020
    
  • Mathematica
    a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]
  • PARI
    a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ Michel Marcus, Jan 14 2020

Formula

a(n) = A003418(n) * A330718(n) / A330719(n).
Showing 1-6 of 6 results.