A330718
a(n) = numerator(Sum_{k=1..n} (2^k-2)/k).
Original entry on oeis.org
0, 1, 3, 13, 25, 137, 245, 871, 517, 4629, 8349, 45517, 83317, 1074679, 1992127, 7424789, 13901189, 78403447, 147940327, 280060651, 531718651, 11133725681, 21243819521, 40621501691, 15565330735, 388375065019, 248882304985, 479199924517, 923951191477, 2973006070891
Offset: 1
Numerators of 0, 1, 3, 13/2, 25/2, 137/6, 245/6, ...
-
[Numerator( &+[(2^k -2)/k: k in [1..n]] ): n in [1..30]]; // G. C. Greubel, Dec 28 2019
-
seq(numer(add((2^k -2)/k, k = 1..n)), n = 1..30); # G. C. Greubel, Dec 28 2019
-
Numerator @ Accumulate @ Array[(2^# - 2)/# &, 30]
Table[Numerator[Simplify[-(2^(n+1)*LerchPhi[2,1,n+1] +Pi*I +2*HarmonicNumber[n])]], {n,30}] (* G. C. Greubel, Dec 28 2019 *)
-
a(n) = numerator(sum(k=1, n, (2^k-2)/k)); \\ Michel Marcus, Dec 28 2019
-
[numerator( sum((2^k -2)/k for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Dec 28 2019
A001901
Successive numerators of Wallis's approximation to Pi/2 (reduced).
Original entry on oeis.org
1, 2, 4, 16, 64, 128, 256, 2048, 16384, 32768, 65536, 262144, 1048576, 2097152, 4194304, 67108864, 1073741824, 2147483648, 4294967296, 17179869184, 68719476736, 137438953472, 274877906944, 2199023255552
Offset: 0
From _Wolfdieter Lang_, Dec 07 2017: (Start)
The Wallis numerators (N) and denominators (D) with partial products A(n) = A001900(n) and B(n) = A000246(n+1) in unreduced form, and a(n) and b(n) = A001902(n) in reduced form.
n, k: 0 1 2 3 4 5 6 7 8 9 10 ...
N(k): 1 2 2 4 4 6 6 8 8 10 10 ...
D(k): 1 1 3 3 5 5 7 7 9 9 9 ...
A(n): 1 2 4 16 64 384 2304 18432 147456 1474560 14745600 ...
B(n): 1 1 3 9 45 225 1575 11025 99225 893025 9823275 ...
a(n): 1 2 4 16 64 128 256 2048 16384 32768 65536 ...
b(n): 1 1 3 9 45 75 175 1225 11025 19845 43659 ...
n = 5: numerator(1*2*2*4*4*6/(1*1*3*3*5*5)) = numerator(384/225) = numerator(128/75) = 128. (End)
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
-
a[n_?EvenQ] := n!!^2/((n - 1)!!^2*(n + 1)); a[n_?OddQ] := ((n - 1)!!^2*(n + 1))/n!!^2; Table[a[n] // Numerator, {n, 0, 23}] (* Jean-François Alcover, Jun 19 2013 *)
A279683
Number of move operations required to sort all permutations of [n] by MTF sort.
Original entry on oeis.org
0, 0, 1, 9, 78, 750, 8220, 102900, 1463280, 23451120, 419942880, 8331634080, 181689298560, 4323472433280, 111534141438720, 3101254066310400, 92468631077222400, 2943141763622860800, 99596858633182310400, 3570677764371119001600, 135190500045467682816000
Offset: 0
a(0) = a(1) = 0 because 0 or 1 elements are already sorted.
a(2) = 1: [1,2] is sorted and [2,1] needs one move.
a(3) = 9: [1,2,3](0), [1,3,2]->[2,1,3]->[1,2,3](2), [2,1,3]->[1,2,3](1), [2,3,1]->[1,2,3](1), [3,1,2]->[1,3,2]->[2,1,3]->[1,2,3](3), [3,2,1]->[2,3,1]->[1,2,3](2); sum of all moves gives 0+2+1+1+3+2 = 9.
-
a:= proc(n) option remember;
`if`(n=0, 0, a(n-1)*n + (n-1)! * (2^(n-1)-1))
end:
seq(a(n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
(4*n-3)*a(n-1)-(n-1)*(5*n-7)*a(n-2)+(2*n-2)*(n-2)^2*a(n-3))
end:
seq(a(n), n=0..20);
-
a[0] = 0; a[n_] := a[n] = a[n-1]*n + (n-1)!*(2^(n-1) - 1);
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 30 2018 *)
A290348
Denominators of the Harary index for the n-halved cube graph.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 15, 15, 105, 105, 105, 105, 315, 315, 315, 315, 3465, 3465, 3465, 693, 9009, 3003, 3003, 3003, 5005, 5005, 5005, 5005, 85085, 17017, 153153, 153153, 2909907, 2909907, 14549535
Offset: 1
First few terms are 0, 1, 6, 26, 100, 1096/3, 3920/3, 13936/3, 16544, 296256/5, ....
-
Table[-2^(n - 1) HarmonicNumber[n] - 2^(2 n - 1) Re[LerchPhi[2, 1, n + 1]], {n, 20}] // Denominator
A332786
a(n) = numerator(-1/n + Sum_{k=1..n} 2^(k-1)/k).
Original entry on oeis.org
0, 3, 3, 61, 25, 137, 343, 32663, 2357, 74689, 66671, 5299069, 2416531, 115545821, 106974277, 637525199, 74575583, 1588674349, 4496071973, 3234136824109, 1535024393629, 5843920343363, 5575228585159, 1961561381531581, 93953561866435, 9016382638527647, 2888981280567587, 200248741591132607, 96525489421136333
Offset: 1
a(5) = numerator(-1/5 + 1/1+2/2+4/3+8/4+16/5) = numerator(128/15 - 1/5) = numerator(25/3) = 25.
-
f:= proc(n) local k; numer(-1/n + add(2^(k-1)/k,k=1..n)) end proc:
map(f, [$1..30]); # Robert Israel, Sep 15 2024
-
n = 30; Numerator[Accumulate @ Table[(2^(k-1))/k, {k, 1, n}] - 1/Range[n]] (* Amiram Eldar, Feb 24 2020 *)
-
a(n) = numerator(-1/n + sum(k=1, n, 2^(k-1)/k)); \\ Michel Marcus, Feb 24 2020
A331343
a(n) = lcm(1,2,...,n) * Sum_{k=1..n} (2^(k-1) - 1) / k.
Original entry on oeis.org
0, 1, 9, 39, 375, 685, 8575, 30485, 162855, 291627, 5785857, 10514427, 250200951, 461037291, 854622483, 3185234481, 101381371377, 190598779657, 6833215763803, 12935721409039, 24559552771039, 46750514134519, 2051664357879617, 3923102768811707, 37581323659852375
Offset: 1
-
[Lcm([1..n])*&+[(2^(k-1)-1)/k:k in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jan 14 2020
-
a[n_] := LCM @@ Range[n] * Sum[(2^(k-1) - 1) / k, {k, 1, n}]; Array[a, 25]
-
a(n) = lcm([1..n])*sum(k=1, n, (2^(k-1) - 1) / k); \\ Michel Marcus, Jan 14 2020
Showing 1-6 of 6 results.
Comments