A330718 a(n) = numerator(Sum_{k=1..n} (2^k-2)/k).
0, 1, 3, 13, 25, 137, 245, 871, 517, 4629, 8349, 45517, 83317, 1074679, 1992127, 7424789, 13901189, 78403447, 147940327, 280060651, 531718651, 11133725681, 21243819521, 40621501691, 15565330735, 388375065019, 248882304985, 479199924517, 923951191477, 2973006070891
Offset: 1
Examples
Numerators of 0, 1, 3, 13/2, 25/2, 137/6, 245/6, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
Programs
-
Magma
[Numerator( &+[(2^k -2)/k: k in [1..n]] ): n in [1..30]]; // G. C. Greubel, Dec 28 2019
-
Maple
seq(numer(add((2^k -2)/k, k = 1..n)), n = 1..30); # G. C. Greubel, Dec 28 2019
-
Mathematica
Numerator @ Accumulate @ Array[(2^# - 2)/# &, 30] Table[Numerator[Simplify[-(2^(n+1)*LerchPhi[2,1,n+1] +Pi*I +2*HarmonicNumber[n])]], {n,30}] (* G. C. Greubel, Dec 28 2019 *)
-
PARI
a(n) = numerator(sum(k=1, n, (2^k-2)/k)); \\ Michel Marcus, Dec 28 2019
-
Sage
[numerator( sum((2^k -2)/k for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Dec 28 2019
Formula
a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k).
a(n) = numerator(-(2^(n+1)*LerchPhi(2,1,n+1) + Pi*i + 2*HarmonicNumber(n))). - G. C. Greubel, Dec 28 2019
Comments