cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159534 Numerator of Hermite(n, 6/17).

Original entry on oeis.org

1, 12, -434, -19080, 523596, 50396112, -908439096, -185674985568, 1447444755600, 875930470333632, 2981558025372384, -5027099422223924352, -79281938992004709696, 33916578324641082789120, 1002723429481616382125184, -262420270649216245344056832
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(12/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
  • Mathematica
    Numerator[Table[HermiteH[n,6/17],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *)
    Table[17^n*HermiteH[n, 6/17], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,6/17)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 17^n * Hermite(n, 6/17).
E.g.f.: exp(12*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/17)^(n-2*k)/(k!*(n-2*k)!)). (End)