cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A159537 Numerator of Hermite(n, 9/17).

Original entry on oeis.org

1, 18, -254, -25380, -16404, 58383288, 1098306744, -182703721392, -7732416071280, 705638518433568, 52925521734602784, -3125931245323172928, -392767229604421613376, 14611648984681938387840, 3214262644971898893888384, -60380735974552065344410368
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(18/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 02 2018
  • Mathematica
    Numerator[Table[HermiteH[n,9/17],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
    Table[17^n*HermiteH[n, 9/17], {n,0,50}] (* G. C. Greubel, Jul 02 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,9/17)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 02 2018: (Start)
a(n) = 17^n * Hermite(n, 9/17).
E.g.f.: exp(18*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/17)^(n-2*k)/(k!*(n-2*k)!)). (End)
Showing 1-1 of 1 results.