A159612 INVERT transform of (1, 3, 1, 3, 1, ...).
1, 4, 8, 24, 56, 152, 376, 984, 2488, 6424, 16376, 42072, 107576, 275864, 706168, 1809624, 4634296, 11872792, 30409976, 77901144, 199541048, 511145624, 1309309816, 3353892312, 8591131576, 22006700824, 56371227128, 144398030424, 369882938936, 947475060632, 2427006816376
Offset: 1
Examples
a(4) = 24 = (1, 3, 1, 3) dot (8, 4, 1, 1) = (8 + 12, + 1 + 3).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Sean A. Irvine, Walks on Graphs.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 33.
- Index entries for linear recurrences with constant coefficients, signature (1,4).
Programs
-
Mathematica
LinearRecurrence[{1, 4}, {1, 4}, 50] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *)
-
PARI
Vec(x*(1+3*x)/(1-x-4*x^2) + O(x^40)) \\ Colin Barker, Dec 22 2016
Formula
G.f.: x*(1+3*x)/(1-x-4*x^2). - Philippe Deléham, Mar 01 2012
a(n) = a(n-1) + 4*a(n-2), a(1)=1, a(2)=4. - Vincenzo Librandi, Mar 11 2011
a(n+1) = Sum_{k=0..n} A119473(n,k)*3^k. - Philippe Deléham, Oct 05 2012
a(n) = 2^(-3-n)*((1-sqrt(17))^n*(-5+3*sqrt(17)) + (1+sqrt(17))^n*(5+3*sqrt(17))) / sqrt(17) for n > 0. - Colin Barker, Dec 22 2016
E.g.f.: (exp(x/2)*(51*cosh(sqrt(17)*x/2) + 5*sqrt(17)*sinh(sqrt(17)*x/2)) - 51)/68. - Stefano Spezia, Jun 07 2025
Comments