cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159612 INVERT transform of (1, 3, 1, 3, 1, ...).

Original entry on oeis.org

1, 4, 8, 24, 56, 152, 376, 984, 2488, 6424, 16376, 42072, 107576, 275864, 706168, 1809624, 4634296, 11872792, 30409976, 77901144, 199541048, 511145624, 1309309816, 3353892312, 8591131576, 22006700824, 56371227128, 144398030424, 369882938936, 947475060632, 2427006816376
Offset: 1

Views

Author

Gary W. Adamson, Apr 17 2009

Keywords

Comments

The sequence 1,1,4,8,24,... is an eigensequence of the sequence triangle of 1,3,1,3,1,3,1,..., which is the Riordan array ((1+3x)/(1-x^2),x). - Paul Barry, Feb 10 2011
From Sean A. Irvine, Jun 07 2025: (Start)
Also, the number of walks of length n-1 starting at vertex 1 in the following graph:
0 2
|\ /|
| 1 |
|/ \|
4 3. (End)

Examples

			a(4) = 24 = (1, 3, 1, 3) dot (8, 4, 1, 1) = (8 + 12, + 1 + 3).
		

Crossrefs

Cf. A026597 (vertices 0, 2, 3, 4), A384604 (missing edge {0,4}).

Programs

Formula

G.f.: x*(1+3*x)/(1-x-4*x^2). - Philippe Deléham, Mar 01 2012
a(n) = a(n-1) + 4*a(n-2), a(1)=1, a(2)=4. - Vincenzo Librandi, Mar 11 2011
a(n+1) = Sum_{k=0..n} A119473(n,k)*3^k. - Philippe Deléham, Oct 05 2012
a(n) = 2^(-3-n)*((1-sqrt(17))^n*(-5+3*sqrt(17)) + (1+sqrt(17))^n*(5+3*sqrt(17))) / sqrt(17) for n > 0. - Colin Barker, Dec 22 2016
a(n) = A006131(n)+3*A006131(n-1). - R. J. Mathar, Jun 07 2025
E.g.f.: (exp(x/2)*(51*cosh(sqrt(17)*x/2) + 5*sqrt(17)*sinh(sqrt(17)*x/2)) - 51)/68. - Stefano Spezia, Jun 07 2025