A159634 Coefficient for dimensions of spaces of modular & cusp forms of weight k/2, level 4*n and trivial character, where k>=5 is odd.
1, 2, 4, 4, 6, 8, 8, 8, 12, 12, 12, 16, 14, 16, 24, 16, 18, 24, 20, 24, 32, 24, 24, 32, 30, 28, 36, 32, 30, 48, 32, 32, 48, 36, 48, 48, 38, 40, 56, 48, 42, 64, 44, 48, 72, 48, 48, 64, 56, 60, 72, 56, 54, 72, 72, 64, 80, 60, 60, 96, 62, 64, 96, 64, 84, 96, 68, 72, 96, 96
Offset: 1
References
- Ken Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and q-series. American Mathematical Society, 2004, (p. 16, theorem 1.56).
Links
- Peter Luschny, Table of n, a(n) for n = 1..1000
- H. Cohen and J. Oesterle, Dimensions des espaces de formes modulaires, Modular Functions of One Variable. VI, Proc. 1976 Bonn conf., Lect. Notes in Math. 627, Springer-Verlag, 1977, pp. 69-78; Scanned copy.
- S. R. Finch, Primitive Cusp Forms, April 27, 2009. [Cached copy, with permission of the author]
- Peter Humphries, Answer to: "A conjecture related to the Cohen-Oesterlé dimension formula", MathOverflow, 2014.
- Jon Maiga, Computer-generated formulas for A159634, Sequence Machine.
- Wikipedia, Cusp Form.
Crossrefs
Programs
-
Magma
[[4*n,(Dimension(HalfIntegralWeightForms(4*n,7/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2))))/2] : n in [1..70]]; [[4*n,(Dimension(HalfIntegralWeightForms(4*n,5/2))+ Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,7/2))))/2] : n in [1..70]];
-
Mathematica
(* per Enrique Pérez Herrero's conjecture proved by P. Humphries, see link *) dedekindPsi[n_Integer]:=n Apply[Times,1+1/Map[First,FactorInteger[n]]]; 1/3 dedekindPsi /@ (2 Range[70]) (* Wouter Meeussen, Apr 06 2014 *)
-
PARI
a(n) = 2*n*sumdiv( 2*n, d, moebius(d)^2 / d)/3; \\ Andrew Howroyd, Aug 08 2018
Formula
a(n) = A001615(2*n)/3. - Enrique Pérez Herrero, Jan 31 2014
From Peter Bala, Mar 19 2019: (Start)
a(n)= n*Product_{p|n, p odd prime} (1 + 1/p).
a(n) = Sum_{d|n, d odd} mu(d)^2*n/d, where mu(n) = A008683(n) is the Möbius function.
If n = m*2^k , where 2^k is the largest power of 2 dividing n, then
a(n) = (2^k)*a(m) = 2^k * Sum_{d^2|m} mu(d)*sigma(m/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = 2^k * Sum_{d|m} 2^omega(d)*phi(m/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^(2^n-1)/(1 - x^(2*n-1))^2. (End)
a(n) = A000082(n)/A080512(n). [obvious by prime products, discovered by Sequence Machine]. - R. J. Mathar, Jun 24 2021
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(2^e) = 2^e, and a(p^e) = (p+1)*p^(e-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 6/Pi^2 = 0.607927... (A059956). (End)
Comments